Research advance of 3D printing for articular cartilage regeneration.

Regen Med

Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China.

Published: January 2025

Articular cartilage lesion frequently leads to dysfunction and the development of degenerative diseases, posing a significant public health challenge due to the limited self-healing capacity of cartilage tissue. Current surgical treatments, including marrow stimulation techniques and osteochondral autografts/allografts, have limited efficacy or have significant drawbacks, highlighting the urgent need for alternative strategies. Advances in 3D printing for cartilage regeneration have shown promising potential in creating cartilage-mimicking constructs, thereby opening new possibilities for cartilage repair. In this review, we summarize current surgical treatment methods and their limitations for addressing articular cartilage lesion, various 3D printing strategies and their features in cartilage tissue engineering, seed cells from different sources, and different types of biomaterials. We also explore the benefits, current challenges, and future research directions for 3D printing in the treatment of articular cartilage lesion within the field of cartilage tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881833PMC
http://dx.doi.org/10.1080/17460751.2025.2466346DOI Listing

Publication Analysis

Top Keywords

articular cartilage
16
cartilage lesion
12
cartilage tissue
12
cartilage
9
cartilage regeneration
8
current surgical
8
tissue engineering
8
advance printing
4
articular
4
printing articular
4

Similar Publications

Chondrocytes in articular cartilage can secrete extracellular matrix to maintain cartilage homeostasis. It is well known that articular cartilage chondrocytes are sensitive to mechanical loading and that mechanical stimuli can be translated to biological processes. This study provides deep insight into the impact of mechanical loading on chondrocytes via single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common musculoskeletal disease globally and is the main reason for the chronic pain and disability in people over sixty-five worldwide. Degradation of the articular cartilage, synovial inflammation and osteophyte formation are widely acknowledged as the primary pathological manifestations of OA. OA affects more than 300 million people all over the world, bringing extremely large socioeconomic burden.

View Article and Find Full Text PDF

Osteoarthritis (OA) is one of the most common degenerative diseases in dogs and humans, which can lead to articular cartilage deterioration, chronic pain, and decreased quality of life. The anti-inflammatory, anti-fibrotic, analgesic, and cartilage regeneration properties of mesenchymal stem cell (MSC) therapy provide a new direction for the treatment development of OA in the future. Currently, MSC therapy lacks confirmed ideal sources, dosages, formulations, and specific characteristics.

View Article and Find Full Text PDF

Osteoarthritis (OA) is one of the most common degenerative joint diseases in the elderly, increasing in prevalence and posing a substantial socioeconomic challenge, while no disease-modifying treatments available. Better understanding of the early molecular events will benefit the early-stage diagnosis and clinical therapy. Here, we observed the nucleus accumulation of ZBTB20, a member of ZBTB-protein family, in the chondrocytes of early-stage OA.

View Article and Find Full Text PDF

Targeting the reorganization of F-actin for cell-based implantation cartilage repair therapies.

Differentiation

March 2025

Department of Biological Sciences, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA. Electronic address:

Articular cartilage is an avascular tissue that allows for frictionless mobility of joints. Unfortunately, cartilage is incapable of self-repair and any damage leads to degradation in osteoarthritis (OA). Autologous chondrocyte implantation therapies are currently being used to treat focal cartilage defects caused by post-traumatic OA (PTOA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!