A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wild soybean cotyledons at the emergence stage tolerate alkali stress by maintaining carbon and nitrogen metabolism, and accumulating organic acids. | LitMetric

Wild soybean cotyledons at the emergence stage tolerate alkali stress by maintaining carbon and nitrogen metabolism, and accumulating organic acids.

Physiol Plant

Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China.

Published: February 2025

Soil alkalization is a global ecological problem that constrains food security and sustainable socio-economic development. As a wild relative of soybean, wild soybean (Glycine soja) exhibits strong salt and alkali stress resistance and its cotyledons play a key role during the emergence (VE) stage. This study aimed to compare variations in growth parameters, cotyledon ultrastructure, photosynthetic physiology, mineral ion and metabolite contents, and gene expression in two ecotypes of wild soybean to elucidate the regulatory mechanisms underlying alkali stress resistance in salt-tolerant wild soybean cotyledons during the VE stage. The results showed that salt-tolerant wild soybean cotyledons exhibited relatively stable growth parameters, dense and orderly chloroplast structure, high photosynthetic rates, as well as high K and Ca contents under alkali stress. Metabolomics, transcriptomics, and weighted gene co-expression network analyses revealed that salt-tolerant wild soybean cotyledons adapted to alkali stress during the VE stage by enhancing photosynthetic carbon assimilation pathways, increasing methionine and proline biosynthesis, and enhancing gamma-aminobutyric acid biosynthesis, thereby maintaining a stable carbon and nitrogen balance. In addition, upregulation of the expression of ICL, MS, and ACO led to the accumulation of various organic acids, such as pyruvic, aconitic, succinic, oxalic, malic, and fumaric acids, thereby promoting the synthesis of organic acid metabolism modules. This study provides novel insights into the key metabolic modules by which wild soybeans resist alkali stress.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.70117DOI Listing

Publication Analysis

Top Keywords

wild soybean
24
alkali stress
24
soybean cotyledons
16
salt-tolerant wild
12
wild
8
emergence stage
8
carbon nitrogen
8
organic acids
8
stress resistance
8
growth parameters
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!