SDRD-Net: A Symmetric Dual-branch Residual Dense Network for OCT and US Image Fusion.

Ultrasound Med Biol

College of Mechanical Engineering, University of South China, Hengyang, Hunan, China.

Published: February 2025

Ultrasound (US) images have the advantages of no radiation, high penetration, and real-time imaging, and optical coherence tomography (OCT) has the advantage of high resolution. The purpose of fusing endometrial images from optical coherence tomography (OCT) and ultrasound (US) is to combine the advantages of different modalities to ultimately obtain more complete information on endometrial thickness. To better integrate multimodal images, we first proposed a Symmetric Dual-branch Residual Dense (SDRD-Net) network for OCT and US endometrial image fusion. Firstly, using Multi-scale Residual Dense Blocks (MRDB) to extract shallow features of different modalities. Then, the Base Transformer Module (BTM) and Detail Extraction Module (DEM) are used to extract primary and advanced features. Finally, the primary and advanced features are decomposed and recombined through the Feature Fusion Module (FMM), and the fused image is output. We have conducted experiments across both private and public datasets, encompassing IVF and MIF tasks, achieving commendable results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2025.02.001DOI Listing

Publication Analysis

Top Keywords

residual dense
12
symmetric dual-branch
8
dual-branch residual
8
network oct
8
image fusion
8
optical coherence
8
coherence tomography
8
tomography oct
8
primary advanced
8
advanced features
8

Similar Publications

Enhanced Tumor Ablation and Immune Activation Via Irreversible Electroporation and Functionalized Vermiculite Nanosheets.

Small

March 2025

State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.

Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) as a critical clinical tool in medical imaging, requires a long scan time for producing high-quality MRI images. To accelerate the speed of MRI while reconstructing high-quality images with sharper edges and fewer aliases, a novel dual-domain generator and edge-enhancement dual discriminator generative adversarial network structure named DGEDDGAN for MRI reconstruction is proposed, in which one discriminator is responsible for holistic image reconstruction, whereas the other is adopted to enhance the edge preservation. A dual-domain U-Net structure that cascades the frequency domain and image domain is designed for the generator.

View Article and Find Full Text PDF

The utilization of deep learning and invertible networks for image hiding has been proven effective and secure. These methods can conceal large amounts of information while maintaining high image quality and security. However, existing methods often lack precision in selecting the hidden regions and primarily rely on residual structures.

View Article and Find Full Text PDF

Background: Malaria remains a leading cause of illness and death globally, with countries in sub-Saharan Africa bearing a disproportionate burden. Global high-resolution maps of malaria prevalence, incidence, and mortality are crucial for tracking spatially heterogeneous progress against the disease and to inform strategic malaria control efforts. We present the latest such maps, the first since 2019, which cover the years 2000-22.

View Article and Find Full Text PDF

Non-electroencephalogram seizure detection models hold promise for the early detection of generalised onset seizures. However, these models often experience high false alarm rates and difficulties in distinguishing normal movements from seizure manifestations. To address this, we were granted exclusive access to the newly developed Open Seizure Database, from which a representative dataset of 94 events was selected (42 generalised tonic-clonic seizures, 19 auras/focal seizures, and 33 seizures labelled as Other), with a combined duration of approximately 5 hours and 29 minutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!