Endocytic highways: Navigating macropinocytosis and other endocytic routes for precision drug delivery.

Int J Pharm

Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA. Electronic address:

Published: February 2025

Drug molecules can reach intracellular targets by different mechanisms, such as passive diffusion, active transport, and endocytosis. Endocytosis is the process by which cells engulf extracellular material by forming a vesicle and transporting it into the cells. In addition to its biological functions, endocytosis plays a vital role in the internalization of the therapeutic molecules. Clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis are the most researched routes in the field of drug delivery. In addition to conventional small therapeutic molecules, the use of nanoformulations and large molecules, such as nucleic acids, peptides, and antibodies, have broadened the field of drug delivery. Although the majority of small therapeutic molecules can enter cells via passive diffusion, large molecules, and advanced targeted delivery systems, such as nanoparticles, are internalized by the endocytic route. Therefore, it is imperative to understand the characteristics of the endocytic routes in greater detail to design therapeutic molecules or formulations for successful delivery to the intracellular targets. This review highlights the prospects and limitations of the major endocytic routes for drug delivery, with a major emphasis on macropinocytosis. Since macropinocytosis is a non-selective uptake of extracellular matrix, the selective induction of macropinocytosis, using compounds that induce macropinocytosis and modulate macropinosome trafficking pathways, could be a potential approach for the intracellular delivery of diverse therapeutic modalities. Furthermore, we have summarized the characteristics associated with the formulations or drug carriers that can affect the endocytic routes for cellular internalization. The techniques that are used to study the intracellular uptake processes of therapeutic molecules are briefly discussed. Finally, the major limitations for intracellular targeting, endo-lysosomal degradation, and different approaches that have been used in overcoming these limitations, are highlighted in this review.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2025.125356DOI Listing

Publication Analysis

Top Keywords

therapeutic molecules
20
endocytic routes
16
drug delivery
16
molecules
8
intracellular targets
8
passive diffusion
8
field drug
8
small therapeutic
8
large molecules
8
delivery
7

Similar Publications

T-cell Engagers in Prostate Cancer.

Eur Urol

March 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. Electronic address:

Owing to the "cold" tumor immune microenvironment of prostate cancer, immune-targeting agents have shown limited efficacy in patients with advanced prostate cancer, highlighting the need for new therapies with novel mechanisms of action. In this context, T-cell engagers (TCEs), which induce T-cell-mediated killing of cancer cells by binding the CD3 receptor on T cells and a specific tumor antigen expressed on malignant cells, represent a promising therapeutic option. Multiple studies have explored the use of TCEs in previously treated patients with metastatic castration-resistant prostate cancer, and several ongoing trials are currently assessing novel TCEs either as single agents or in combinatorial regimens with molecules with a distinct mechanism of action (eg, androgen receptor pathway inhibitors and other immune-targeting agents).

View Article and Find Full Text PDF

Cytokines in hematopoietic cell transplantation and related cellular therapies.

Best Pract Res Clin Haematol

December 2024

Division of Hematology/Oncology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA; Columbia Center for Translational Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA. Electronic address:

Cytokines are pleiotropic molecules involved in hematopoiesis, immune responses, infections, and inflammation. They play critical roles in hematopoietic cell transplantation (HCT) and immune effector cell (IEC) therapies, mediating both therapeutic and adverse effects. Thus, cytokines contribute to the immunopathology of graft-versus-host disease (GVHD), cytokine release syndrome (CRS), and immune effector cell-associated neurotoxicity syndrome (ICANS).

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSC) have been transplanted for therapeutic purposes with inconsistent results. MSC preparations are heterogeneous, and this person-to-person heterogeneity may account for the variable clinical outcomes. Additionally, the mechanisms of therapeutic action for MSC are unclear which confounds attempts to understand and identify factors that may account for variable clinical results.

View Article and Find Full Text PDF

Fc-mediated immune stimulating, pro-inflammatory and antitumor effects of anti-HER2 IgE against HER2-expressing and trastuzumab-resistant tumors.

J Immunother Cancer

March 2025

St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK

Background: Anti-human epidermal growth factor receptor 2 (HER2) IgG1-based antibody therapies significantly improve cancer prognosis, yet intrinsic or acquired resistance to fragment antigen-binding (Fab)-mediated direct effects commonly occurs. Most resistant tumors retain antigen expression and therefore remain potentially targetable with anti-HER2 therapies that promote immune-mediated responses. Tumor-antigen-specific IgE class antibodies can mediate powerful immune cell-mediated effects against different cancers and have been shown to activate IgE Fc receptor-expressing monocytes.

View Article and Find Full Text PDF

Chronic pain is a significant public health concern that diminishes patients' quality of life and imposes considerable socioeconomic costs. Effective pharmacological treatments for ongoing pain are limited. Recent studies have indicated that various models of chronic pain-such as neuropathic pain, inflammatory pain, and pain associated with cancer-have abnormal levels of long noncoding RNAs (lncRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!