Extended conjugation in fluorescent probes is crucial for efficient optical characteristics. Herein, two novel triazine based organic compounds ITA and DIT with extraordinary photophysical properties were synthesized through palladium catalyzed Suzuki and Sonogashira coupling reactions, respectively. Solvatochromism and solid-state based comprehensive study of photophysical properties of probes ITA and DIT was investigated for developing dual phase and extremely sensitive and selective fluorescent probes for detection of 4-nitroanilne (4-NA). The probes ITA and DIT were also utilized in the formulation of latent fingerprint sensing and invisible ink. Furthermore, the outstanding fluorescence properties of probes ITA and DIT were efficiently used for the selective sensing of 4-nitroanilne (4-NA) in real samples and portable paper-strips were constructed for the on-site sensing of 4-NA. The sensing approach for selective detection of 4-NA was comprehensively evaluated with the help of spectroscopic analysis including titration NMR, UV-visible spectroscopy, fluorescence studies, dynamic light scattering (DLS) and DFT calculations. DFT calculations included the calculation of RDG analysis, thermodynamic stability, charge transfer and molecular orbital studies as well as QTAIM. All the analysis and theoretical studies supported the existence of non-covalent interactions between probes and 4-NA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2025.125895 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
May 2025
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan. Electronic address:
Extended conjugation in fluorescent probes is crucial for efficient optical characteristics. Herein, two novel triazine based organic compounds ITA and DIT with extraordinary photophysical properties were synthesized through palladium catalyzed Suzuki and Sonogashira coupling reactions, respectively. Solvatochromism and solid-state based comprehensive study of photophysical properties of probes ITA and DIT was investigated for developing dual phase and extremely sensitive and selective fluorescent probes for detection of 4-nitroanilne (4-NA).
View Article and Find Full Text PDFSensors (Basel)
March 2021
Institute for Textile Technology (ITA), RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany.
The force-enhanced light coupling between two optical fibres is investigated for the application in a pressure or force sensor, which can be arranged into arrays and integrated into textile surfaces. The optical coupling mechanisms such as the influence of the applied force, the losses at the coupling point and the angular alignment of the two fibres are studied experimentally and numerically. The results reveal that most of the losses occur at the deformation of the pump fibre.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!