Urushiol-dextran SPIONs magnetic recyclable nanoparticles immobilizing vancomycin (V@DU@Fe) for antibacterial application.

Int J Biol Macromol

National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Key Lab. of Biomass Energy and Material, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China.

Published: February 2025

In this study, magnetic nanocarriers (DU@Fe, D = 281.6 nm, zeta potential -28.0 mV) were fabricated using dextran, urushiol as the shell and superparamagnetic iron oxide nanoparticles (SPIONs) as the core. Subsequently, the specific ligand Lys-D-Ala-D-Ala of vancomycin (Van) was grafted onto the surface of DU@Fe, which generated nanoparticles (Lys-D-Ala-D-Ala@DU@Fe) with an average particle size of 385.5 nm and a zeta potential of -16.8 mV via specific and robust interaction. Ultimately, the immobilization capacity of Van reached up to 294.1 mg·g for efficient antibacterial properties. Moreover, the assembly process adhered to the pseudo-second-order kinetics model (R = 0.998-0.999) and the Langmuir adsorption isotherm model (R = 0.999, 30 °C). Notably, V@DU@Fe effectively adhered to the cell envelopes of both Gram-negative and Gram-positive bacteria, achieving rapid bactericidal effects within 1 h. Furthermore, it maintained over 85.0 % of its initial antibacterial efficiency against S. aureus and S. epidermidis even after six recycles. Therefore, this study provides strategies and methods for the development of urushiol-dextran intelligent SPIONs nanomedicines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.140847DOI Listing

Publication Analysis

Top Keywords

zeta potential
8
urushiol-dextran spions
4
spions magnetic
4
magnetic recyclable
4
recyclable nanoparticles
4
nanoparticles immobilizing
4
immobilizing vancomycin
4
vancomycin v@du@fe
4
v@du@fe antibacterial
4
antibacterial application
4

Similar Publications

Background: This article is derived from Irisvaldo Lima Guedes's Master's dissertation and is available at the address: https://sigaa.ufpi.br/sigaa/public/programa/noticias_desc.

View Article and Find Full Text PDF

Background: Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS).

Methods: To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer.

View Article and Find Full Text PDF

Biosynthesis Scale-Up Process for Magnetic Iron-Oxide Nanoparticles Using Extract and Their Separation Properties in Lubricant-Water Emulsions.

Nanomaterials (Basel)

March 2025

Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru.

The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using extract in an aqueous medium has been systematically carried out. First, the biosynthesis was optimized for various extract concentrations, prepared by decoction and infusion methods, and yielded IONPs with sizes from 4 to 9 nm.

View Article and Find Full Text PDF

The use of metal nanoparticles is gaining popularity owing to their low cost and high efficacy. We focused on green synthesis of silver nanoparticles (AgNPs) using (Tc) leaf extracts. The structural characteristics of Tc nanoparticles (TcAgNPs) were determined using several advanced techniques.

View Article and Find Full Text PDF

This study explores the green synthesis of silver nanoparticles (AgNPs) using (lemongrass) extract as a reducing agent. Synthesis was confirmed by a color change (light yellow to dark brown) under optimal conditions: 1.50 mM silver nitrate, 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!