Recently, our group identified antimony (Sb) as a novel nerve pollutant, can lead to neuronal injure. However, Sb-associated neurotoxicological mechanisms yet remain unclear. Herein, we found Sb induced hippocampal neuronal ferroptosis in vivo and in vitro. Moreover, ferroptosis inhibition using ferrostatin-1 effectively attenuated Sb-induced neuronal damage in PC12 cells and mice hippocampal regions. Furthermore, iron chelator deferoxamine (DFO) also effectively attenuated ferroptosis and cytotoxicity in PC12 cells. In vitro, Sb treatment reduced expression of the heavy (H)- and light (L)-chain subunits of ferritin (FTH1 and FTL). Moreover, Sb accelerated FTH1 and FTL protein degradation, while ferritin overexpression by plasmid or hippocampal AAV injections dramatically weaken Sb-induced ferroptosis. Sb exposure accelerated autophagic flux, and autophagy inhibition with beclin1 knockdown effectively reduced Sb-mediated ferroptosis. 3-methyladenine treatment in Sb-exposed mice prevented the decrease of FTH1 and FTL protein, resulting in recovery of Sb-induced hippocampal ferroptosis as well as neuronal loss, suggesting that Sb triggered hippocampal neuronal ferritinophagy. Finally, we found Sb upregulated NCOA4 protein expression, while NCOA4 knockdown significantly attenuated Sb-triggered ferroptosis. Collectively, our results proved that Sb triggers hippocampal neuronal ferroptosis through NCOA4-dependent ferritinophagy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2025.111415 | DOI Listing |
Iran J Pharm Res
January 2025
Department of Biology, Kazeroon Branch, Islamic Azad University, Kazeroon, Iran.
Background: Obesity, a rising global health issue, is linked to numerous disorders, including cognitive impairment.
Objectives: This study investigates the effects of coenzyme Q10 (Co-Q10) on cognitive performance, antioxidant defense, cholinergic activity, and hippocampal neuron damage in rats rendered obese by monosodium glutamate (MSG) exposure.
Methods: Forty-eight neonatal male Wistar rats were randomly assigned to one of four groups: Control, MSG, MSG + Q10-10, and MSG + Q10-20.
J Neuroendocrinol
March 2025
Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
Kisspeptin (KP) signaling in the brain is defined by the anatomical distribution of KP-producing neurons, their fibers, receptors, and connectivity. Technological advances have prompted a re-evaluation of these chemoanatomical aspects, originally studied in the early years after the discovery of KP and its receptor Kiss1r. Previously, we characterized (Hernández et al.
View Article and Find Full Text PDFBrain Inj
March 2025
Department of Neonatal, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
Objective: We investigated the mechanism of histone deacetylase 2 (HDAC2) modulating nuclear factor erythroid 2-related factor 2 (Nrf2) acetylation level in neuronal ferroptosis of hypoxic-ischemic brain injury (HIBI) neonatal rats.
Methods: The pathological damage and neuronal injury in the hippocampal CA1 region of HIBI neonatal rat models were assessed by HE and Nissl staining. Levels of neuron-specific enolase (NSE), glutathione peroxidase 4 (GPX4), HDAC2, Nrf2, glutathione (GSH), reactive oxygen species (ROS), malondialdehyde (MDA), active Fe, Nrf2 acetylation, and nuclear Nrf2 in hippocampal tissues were determined.
Nat Neurosci
March 2025
Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
The hippocampus is critical for memory, imagination and constructive reasoning. Recent models have suggested that its neuronal responses can be well explained by state spaces that model the transitions between experiences. Here we use simulations and hippocampal recordings to reconcile these views.
View Article and Find Full Text PDFInflammopharmacology
March 2025
University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, 160014, India.
Background: Alzheimer's disease (AD), one of the most common neurodegenerative disorders, is characterised by hallmark abnormalities such as amyloid-β plaques and neurofibrillary tangles (NFTs). Emerging evidence suggests that faulty insulin signalling contributes to these pathological features, impairing critical cellular and metabolic processes.
Objective: This review aims to elucidate the role of insulin signalling in the central nervous system (CNS) under normal and pathological conditions and to explore therapeutic approaches targeting insulin pathways in AD and other neurodegenerative diseases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!