Background: Understanding how atherosclerosis and angioplasty biomechanically affect the coronary artery wall is crucial for comprehending the pathophysiology of this disease and advancing potential treatments. However, acquiring this information experimentally or in vivo presents challenges. To overcome this, different computational methods have been employed. This research assessed the impact of atherosclerosis and angioplasty on the strains of each coronary artery tunic using the finite element method.

Methods: Anatomical data were used to create two three-dimensional models of the left anterior descending coronary artery: one representing a normal artery and the other with concentric atherosclerosis, which included the surrounding epicardial fat tissue (EFT) and the three arterial tunics (e.g., intima, media, and adventitia). Blood pressure was applied to both models, and angioplasty was performed in the atherosclerotic model. The mean maximum principal and minimum principal strains were obtained for each layer in each case, and the impact of EFT was analyzed by comparing the results of including and omitting it. Furthermore, a sensitivity analysis was conducted for EFT stiffness, EFT volume, and blood pressure.

Results: Noteworthy biomechanical alterations were observed in the atherosclerotic model before and after angioplasty, compared to the healthy state. After angioplasty, strains in the media and adventitia layers increased on average by up to fivefold, whereas the intima layer experienced a comparatively lower impact. Similarly, excluding EFT resulted in an average fourfold increase in strains in the tunics of both the healthy and atherosclerotic models. In addition, in both healthy and atherosclerotic models, a rise in blood pressure caused the most significant increase in arterial tunic strains, followed by reduced EFT stiffness and increased EFT volume, in order of impact.

Conclusion: Coronary artery wall strains are significantly altered by atherosclerosis and angioplasty, leading to cellular growth in the media and adventitia layers and subsequent reobstruction of the lumen after the procedure. EFT strongly influences coronary wall biomechanics, with low EFT stiffness and high volume predicted as risk factors for the development and severity of atherosclerosis. However, all the above may be modulated through interventions targeting epicardial adipose tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2025.108656DOI Listing

Publication Analysis

Top Keywords

coronary artery
16
atherosclerosis angioplasty
12
media adventitia
12
eft stiffness
12
eft
9
finite element
8
epicardial adipose
8
adipose tissue
8
artery wall
8
angioplasty strains
8

Similar Publications

Background: Lumen reduction after bioresorbable scaffold implantation has been reported. This study aimed to assess the influence of pre-dilatation with a scoring balloon versus a standard non-compliant balloon prior to implanting a magnesium-based Magmaris bioresorbable scaffold (MgBRS) on lumen measurements using optical coherence tomography (OCT) and on clinical outcomes after 12 months.

Method: In the OPTIMIS-study (Optimal lesion preparation before implantation of a MgBRS in patients with coronary artery stenosis), patients were randomly assigned to pre-dilatation with a scoring balloon or a standard non-compliant balloon before MgBRS implantation.

View Article and Find Full Text PDF

A Revised Optical Coherence Tomography-Derived Calcium Score to Predict Stent Underexpansion in Severely Calcified Lesions.

JACC Cardiovasc Interv

March 2025

Clinical Trials Center, Cardiovascular Research Foundation, New York, New York, USA; Division of Cardiology, Department of Medicine, Columbia University Medical Center/NewYork-Presbyterian Hospital, New York, New York, USA.

Background: Severe calcification is the morphology most strongly associated with stent underexpansion.

Objectives: The aim of this study was to revise an optical coherence tomography (OCT)-derived calcium score to predict stent underexpansion in severely calcified lesions (angle >270°) using a point-based system.

Methods: A retrospective observational study was conducted in which 250 de novo lesions undergoing OCT-guided stenting, with angiographically visible calcium and optical coherence tomographic maximum superficial calcium angle >270°, not subjected to atherectomy or specialty balloon treatment before stent implantation, were randomly divided into derivation (n = 167) and validation (n = 83) cohorts.

View Article and Find Full Text PDF

A global treatment algorithm was developed for the endovascular revascularization of femoropopliteal lesions and chronic total occlusions, aiming toward a more standardized approach to endovascular treatment in patients with peripheral artery disease. The following steps are proposed. 1) Evaluation of lesion morphology based on preprocedural imaging by Duplex sonography and intravenous ultrasound for selection of lesion preparation tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!