Introduction: Despite druggable events to be present in 80 % of neuroblastomapatients within the Princess Máxima Center precision medicine program 'iTHER', clinical uptake of treatment recommendations has been low, and the clinical impact for individual patients remains hard to predict. This stresses the need for a method integrating genomics and transcriptomics with functional approaches into therapeutic decision making.

Methods: We aimed to launch an online repository integrating genomics and transcriptomics with high-throughput drug screening (HTS) of nineteen commonly used neuroblastoma cell lines and fifteen neuroblastoma patient-derived organoids (NBL-PDOs). Cell lines, NBL-PDOs and their parental tumors were characterized utilizing (lc)WGS, WES and RNAseq. Cells were exposed to ∼200 compounds. Results were transferred to the R2 visualization platform.

Results: A powerful reference set of cell lines is available, reflecting distinct known pharmacologic vulnerabilities. HTS identified additional therapeutic vulnerabilities, such as a striking correlation between a positive mesenchymal signature and sensitivity to BCL2-inhibitor venetoclax. Finally, we explored personalized drug sensitivities within iTHER, demonstrating HTS can support genomic and transcriptomic results, thereby strengthening the rationale for clinical uptake.

Conclusion: We established a dynamic publicly available dataset with detailed genomic, transcriptomic, and pharmacological annotation of classical neuroblastoma cell lines as well as novel sharable NBL-PDOs, representing the heterogeneous landscape of neuroblastoma. We anticipate that in vitro drug screening will be complementary to genomic-guided precision medicine by supporting clinical decision making, thereby improving prognosis for all neuroblastoma patients in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884408PMC
http://dx.doi.org/10.1016/j.ejca.2025.115275DOI Listing

Publication Analysis

Top Keywords

cell lines
20
neuroblastoma cell
12
precision medicine
12
high-throughput drug
8
integrating genomics
8
genomics transcriptomics
8
drug screening
8
genomic transcriptomic
8
neuroblastoma
6
cell
5

Similar Publications

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.

View Article and Find Full Text PDF

Synthesis of high-molecular-weight polypeptides and their block copolymer macromolecular architectures from β-sheet-promoting L-amino acids is still an unresolved problem. Here, an elegant steric hindrance-assisted ring-opening polymerization (SHAROP) strategy is introduced to access β-sheet poly(L-tyrosine) having more than 250 units. The scope of the synthetic methodology is expanded to access unexplored poly(L-tyrosine)-based higher-order β-sheet block copolymer nanoassemblies.

View Article and Find Full Text PDF

T-cell Engagers in Prostate Cancer.

Eur Urol

March 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. Electronic address:

Owing to the "cold" tumor immune microenvironment of prostate cancer, immune-targeting agents have shown limited efficacy in patients with advanced prostate cancer, highlighting the need for new therapies with novel mechanisms of action. In this context, T-cell engagers (TCEs), which induce T-cell-mediated killing of cancer cells by binding the CD3 receptor on T cells and a specific tumor antigen expressed on malignant cells, represent a promising therapeutic option. Multiple studies have explored the use of TCEs in previously treated patients with metastatic castration-resistant prostate cancer, and several ongoing trials are currently assessing novel TCEs either as single agents or in combinatorial regimens with molecules with a distinct mechanism of action (eg, androgen receptor pathway inhibitors and other immune-targeting agents).

View Article and Find Full Text PDF

[Merkel cell carcinoma: An update].

Bull Cancer

March 2025

Dermatologie, CHU de Tours, Tours, France; Réseau CARADERM, France.

Merkel cell carcinoma (MCC) is a rare skin cancer that mainly affects the elderly, and whose incidence is increasing. Although the exact origin of this cancer remains uncertain, research in recent years has revealed that MCC develops through two oncogenesis pathways: virally induced by the Merkel polyomavirus (80% of cases) and induced by mutations linked to ultraviolet rays (20% of cases). MCC is an aggressive cancer, with a high mortality rate and limited therapeutic options in advanced stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!