A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Geometric deep learning with adaptive full-band spatial diffusion for accurate, efficient, and robust cortical parcellation. | LitMetric

Geometric deep learning with adaptive full-band spatial diffusion for accurate, efficient, and robust cortical parcellation.

Med Image Anal

Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, 710049, China; Research Center for Intelligent Medical Equipment and Devices, Xi'an Jiaotong University, Xi'an, 710049, China; Pazhou Lab (Huangpu), Guangzhou, 510000, China. Electronic address:

Published: April 2025

Cortical parcellation delineates the cerebral cortex into distinct regions according to their distinctiveness in anatomy and/or function, which is a fundamental preprocess in brain cortex analysis and can influence the accuracy and specificity of subsequent neuroscientific research and clinical diagnosis. Conventional methods for cortical parcellation involve spherical mapping and multiple morphological feature computation, which are time-consuming and prone to error due to the spherical mapping process. Recent geometric learning approaches have attempted to automate this process by replacing the registration-based parcellation with deep learning-based methods. However, they have not fully addressed spherical mapping and cortical features quantification, making them sensitive to variations in mesh structures. In this work, to directly parcellate original surfaces in individual space with minimal preprocessing, we present a full-band spectral-accelerated spatial diffusion strategy for stable information propagation on highly folded cortical surfaces, contributing to adaptive learning of fine-grained geometric representations and the construction of a compact deep network (termed Cortex-Diffusion) for fully automatic parcellation. Using only raw 3D vertex coordinates and having merely 0.49 MB of learnable parameters, it demonstrates state-of-the-art parcellation accuracy, efficiency, and superior robustness to mesh resolutions and discretization patterns in both the cases of infant and adult brain imaging datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2025.103492DOI Listing

Publication Analysis

Top Keywords

cortical parcellation
12
spherical mapping
12
spatial diffusion
8
parcellation
6
cortical
5
geometric deep
4
deep learning
4
learning adaptive
4
adaptive full-band
4
full-band spatial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!