Skin scalded injury is a devastating condition. Exosomes derived from adipose-derived mesenchymal stem cells (ASC-exos) have been shown encouraging therapeutic potential in wound healing. Here, we explored the activity and mechanism of methyltransferase-like 3 (METTL3)-modified ASC-exos in the migration and proliferation of dermal fibroblasts. ASC-exos were isolated from mouse ASCs, characterized, and used to incubate mouse dermal fibroblasts. Fluorescence microscopy was used to analyze the transfer of ASC-exos into fibroblasts. Cell migration, invasion, proliferation, and viability were assessed by wound healing, transwell, 5-Ethynyl-2'-deoxyuridine (EdU), and Cell Counting Kit-8 (CCK-8) assays, respectively. Protein expression was tested by western blotting. The influence of METTL3 in cyclin B1 (CCNB1) was evaluated by methylated RNA immunoprecipitation (MeRIP), actinomycin D treatment and quantitative PCR assays. ASC-exos significantly increased the proliferative, invasive, and migratory potentials of dermal fibroblasts. Overexpression of METTL3 resulted in elevated proliferation, invasiveness, and migratory capacity in dermal fibroblasts. Furthermore, METTL3-modified ASC-exos derived from METTL3-increased ASCs exerted more significantly promoting effects on fibroblast proliferation and migration than ASC-exos. Mechanistically, METTL3 upregulated CCNB1 by affecting its mRNA m6A modification. Additionally, reduction of CCNB1 had a counteracting impact on the effects of METTL3-modified ASC-exos in dermal fibroblasts. Our study shows that METTL3-modified ASC-exos enhance the migration and invasion of dermal fibroblasts by mediating CCNB1 mRNA m6A modification, raising hopes that these exosomes might serve as a therapeutic option for scalded skin wound repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00403-025-03896-7 | DOI Listing |
J R Soc Interface
March 2025
UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, London NW3 2PF, UK.
Novel therapeutic strategies are essential for enhancing efficacy and accelerating the treatment of diabetes mellitus. This investigation focused on incorporating empagliflozin into a composite of polylactic acid and polycaprolactone, resulting in the fabrication of drug-loaded fibrous patches (DFPs) for transdermal application, both by electrospinning (ES) and by pressurized gyration (PG). Scanning electron microscopy results revealed that DFPs generated through the PG method exhibited smaller diameters and a larger surface area than ES.
View Article and Find Full Text PDFBackground: Male factor infertility (MFI) is responsible for 50% of infertility cases and in 15% of the cases sperm is absent due to germ cell aplasia. Human induced pluripotent stem cell (hiPSC)-derived spermatogonial stem cells (hSSCs) could serve as an autologous germ cell source for MFI in patients with an insufficient sperm yield for assisted reproductive technology (ART). The endocannabinoid system (ECS) has been implicated to play a role in mouse embryonic stem cells (mESCs) and the human testicular environment.
View Article and Find Full Text PDFJ Cosmet Dermatol
March 2025
Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Ultraviolet (UV) B can reach the epidermis and superficial dermis of the skin, inducing sunburn, inflammation, immunosuppression, cancer, and so on. Our former research found that receptor interacting protein (RIP) 1 could be upregulated in human dermal fibroblasts(HDFs) after UVB irradiation by using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry techniques. Besides, our further research found that RIP1 was involved in the UVB-induced production of ROS and MMPs in HDFs.
View Article and Find Full Text PDFJID Innov
May 2025
Department of Dermatology, Alfred Health, Melbourne, Australia.
Dystrophic epidermolysis bullosa (DEB) is a hereditary skin fragility disease characterized by the loss or dysfunction of collagen VII, predisposing patients to dermal-epidermal separation. This disease is highly associated with the development of progressive fibrosis of the skin and other organs and the occurrence of lethal cutaneous squamous cell carcinomas (cSCCs). These are not only caused by chronic wounding but also by collagen VII deficiency, which may directly alter cellular responses.
View Article and Find Full Text PDFACS Omega
March 2025
Center of Excellence in Materials and Biointerfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
Artificial three-dimensional (3D) skin models have been used as an alternative tool for toxicity testing, skin disease studying, and skin tissue engineering. The 3D skin model can be fabricated using a porous scaffold that provides 3D cellular construction that supports cell attachment and promotes nutrient and air permeation. In this study, fish gelatin (FG) and hyaluronic acid (HA) were selected for scaffold fabrication because they carry no risk of zoonotic disease transmission and are major components of the extracellular matrix (ECM), which may functionally mimic the ECM of native human skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!