Microbialites are organo-sedimentary structures formed throughout most of the Earth history, over a wide range of geological contexts, and under a multitude of environmental conditions affecting their composition. The carbon and oxygen isotope records of carbonates, which are most often their main constituents, have been used as a widespread tool for paleoenvironmental reconstructions. However, the multiplicity of factors that influence microbialites formation is not always properly distinguished in their isotopic record, in both ancient and modern settings. It is therefore crucial to refine our understanding of the processes controlling microbialites isotopic signal. Here, we analyzed the carbon and oxygen isotope compositions from bulk and micro-drilled carbonates as well as bulk organic carbon isotope compositions in microbialites from four Mexican volcanic crater lakes of increasing alkalinity. The survey of four lakes allows comparing microbialite formation processes and their geochemical record within distinct physico-chemical contexts. The geochemical analyses were performed in parallel to petrographic and mineralogical characterization and interpreted in light of the known microbial community composition for microbialites of the same lakes. Combining these data, we show that the potential for isotopic biosignature preservation primarily depends on physico-chemical conditions. Carbon isotope biosignatures pointing out to an autotrophic influence on carbonate precipitation are preserved in the lowest alkalinity lakes. By contrast, higher alkalinity lakes, where microbialites are more massive, favor carbonate precipitation in isotopic equilibrium with the lake water, with secondary influence of heterotrophic organic carbon degradation. From these results, we suggest that microbialite carbonate C isotope records can be interpreted as the balance between the microbialite net primary productivity and the amount of precipitation that relates to physico-chemical forcing. The signals of microbialite oxygen isotope compositions highlight a lack of understanding in the oxygen isotope records of relatively rare carbonate phases such as hydromagnesite. Nonetheless, we show that these signals are primarily influenced by the basins' hydrology, though biological effects may also play a (minor) role. Overall, both carbon and oxygen isotopic signals may record a mixture of different local/global and biotic/abiotic phenomena, making microbialites intricate archives of their growth environment, which should thus be interpreted with cautions and in the light of their surrounding sediments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829190PMC
http://dx.doi.org/10.1111/gbi.70012DOI Listing

Publication Analysis

Top Keywords

oxygen isotope
16
organic carbon
12
carbon isotope
12
carbon oxygen
12
isotope records
12
isotope compositions
12
isotope
8
microbialites
8
carbonate precipitation
8
alkalinity lakes
8

Similar Publications

Background: The imperative need for early cancer detection, which is crucial for improved survival rates in many severe cancers such as lung cancer, remains challenging due to the lack of reliable early-diagnosis technologies and robust biomarkers. To address this gap, innovative screening platforms are essential to unveil the chemical signatures of lung cancer and its treatments. It is established that the oxidative tumor environment induces alterations in host metabolic processes and influences endogenous volatile synthesis.

View Article and Find Full Text PDF

Determination of KGa-1b and SHCa-1 Δ'O and δO via Laser Fluorination of Lithium Fluoride Clay Pellets.

Rapid Commun Mass Spectrom

April 2025

Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA.

Rationale: Stable oxygen isotope measurements in silicate clays, such as smectite and kaolinite, provide crucial information for understanding Earth's climate history and environmental changes. Despite a growing interest in the oxygen isotope analysis of silicate clays and clay-rich sediments, there lacks a consensus on the preparation and standardization of clay mineral samples. To improve the accuracy and interlaboratory comparisons of clay isotope measurements, especially those involving laser fluorination techniques, newly established kaolinite and smectite oxygen isotope standards are much needed.

View Article and Find Full Text PDF

Unveiling marine plastic degraders through DNA-stable isotope probing.

J Hazard Mater

March 2025

CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls sur mer, France. Electronic address:

Plastic biodegradation in natural environments is performed by the microbial biofilm living on its surface. This study identifies for the first time plastic degraders in marine environment, by using stable isotope tracers. Polyhydroxybutyrate (PHB) biodegradation was proved by monitoring microbial cell growth (via scanning electron microscopy and flow cytometry) and activities (via continuous oxygen consumption measurements and H-leucine incorporation for protein synthesis) during 90 days.

View Article and Find Full Text PDF

At the end of the Cretaceous, the massive Deccan trap (DT) volcanic eruptions are regarded as the primary driver of global climate deterioration. Accurate age models are key to unravel the sequence of events related to DT volcanism onset and effects on the global climate system. We establish a direct geochemical link between DT volcanism as recorded in marine osmium isotopic data and global climate change documented in benthic foraminifera carbon and oxygen isotope records.

View Article and Find Full Text PDF

The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO) has emerged as a pervasive contaminant in groundwater, attracting significant research attention due to its extensive distribution and the potential environmental consequences it poses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!