FSP1/S100A4-Expressing Stem/Progenitor Cells Are Essential for Temporomandibular Joint Growth and Homeostasis.

J Dent Res

Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.

Published: February 2025

The temporomandibular joint (TMJ) is one of the most used joints in the body. Defects and wear in the cartilage of the joint, condyle, and fibrocartilage disc lie at the heart of many common TMJ disorders. During postnatal development, the condyle acts as a growth center for the mandible, with cells moving as a conveyor belt away from the top of the condyle as they differentiate. The superficial layers of the condyle have been proposed to contain stem/progenitor populations to allow growth and maintain homeostasis. Here we have focused on the role of fibroblast-specific protein 1 (FSP1; also known as S100a4) as a key fibroblast stem/progenitor marker for the condyle. Lineage tracing with mice revealed that FSP1-expressing cells were restricted to the superficial fibroblast zone, giving rise to all layers of the condyle over time. The FSP1-expressing cells overlapped with other putative stem cell markers of the condyle, such as Gli1 and scleraxis. BrdU pulse chase experiments highlighted that a subset of FSP1 fibrocartilage was label retaining, suggesting that FSP1 labels a novel stem/progenitor cell population in the condyle. Destruction of FSP1-expressing cells by conditional diphtheria toxin activity in mice resulted in severe TMJ osteoarthritis with loss of the cartilage structure. Lgr5-expressing cells in the superficial layer of the condyle have been shown to create a Wnt inhibitory niche. FSP1 expression postnatally was associated with a reduction in canonical Wnt activity in the condyle. Importantly, constitutive activation of Wnt/β catenin in FSP1-expressing cells led to a downregulation of FSP1 and progressive postnatal loss of TMJ condylar hyaline cartilage due to loss of the superficial stem/progenitor cells. These data demonstrate a novel role for FSP1-expressing cells in the superficial zone in growth and maintenance of the TMJ condylar cartilage and highlight the importance of regulating Wnt activity in this population.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00220345251313795DOI Listing

Publication Analysis

Top Keywords

fsp1-expressing cells
20
condyle
10
cells
9
stem/progenitor cells
8
temporomandibular joint
8
layers condyle
8
cells superficial
8
wnt activity
8
tmj condylar
8
tmj
5

Similar Publications

FSP1/S100A4-Expressing Stem/Progenitor Cells Are Essential for Temporomandibular Joint Growth and Homeostasis.

J Dent Res

February 2025

Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.

The temporomandibular joint (TMJ) is one of the most used joints in the body. Defects and wear in the cartilage of the joint, condyle, and fibrocartilage disc lie at the heart of many common TMJ disorders. During postnatal development, the condyle acts as a growth center for the mandible, with cells moving as a conveyor belt away from the top of the condyle as they differentiate.

View Article and Find Full Text PDF

In paradox to critical functions for T-cell selection and self-tolerance, the thymus undergoes profound age-associated atrophy and loss of T-cell function, further enhanced by cancer therapies. Identifying thymic epithelial progenitor populations capable of forming functional thymic tissue will be critical in understanding thymic epithelial cell (TEC) ontogeny and designing strategies to reverse involution. We identified a new population of progenitor cells, present in both the thymus and bone marrow (BM) of mice, that coexpress the hematopoietic marker CD45 and the definitive thymic epithelial marker EpCAM and maintain the capacity to form functional thymic tissue.

View Article and Find Full Text PDF

Behavioral abnormalities in mice lacking mesenchyme-specific Pten.

Behav Brain Res

May 2016

Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University-Wexner Medical Center, Columbus, OH 43210, USA.

Phosphatase and tensin homolog (Pten) is a negative regulator of cell proliferation and growth. Using a Cre-recombinase approach with Lox sequences flanking the fibroblast-specific protein 1 (Fsp1 aka S100A4; a mesenchymal marker), we probed sites of expression using a β-galactosidase Rosa26(LoxP) reporter allele; the transgene driving deletion of Pten (exons 4-5) was found throughout the brain parenchyma and pituitary, suggesting that deletion of Pten in Fsp1-positive cells may influence behavior. Because CNS-specific deletion of Pten influences social and anxiety-like behaviors and S100A4 is expressed in astrocytes, we predicted that loss of Pten in Fsp1-expressing cells would result in deficits in social interaction and increased anxiety.

View Article and Find Full Text PDF

Understanding the role of fibroblasts in pathologic conditions is hampered by the absence of specific markers. Fibroblast-specific protein (FSP)1 has been suggested as a fibroblast-specific marker in normal and fibrotic tissues; FSP1 reporter mice and FSP1-Cre-driven gene deletion are considered reliable strategies to investigate fibroblast biology. Because fibroblasts are abundant in normal and injured mammalian hearts, we studied the identity of FSP1(+) cells in the infarcted and remodeling myocardium using mice with green fluorescent protein (GFP) expression driven by the FSP1 promoter.

View Article and Find Full Text PDF

Urinary FSP1 is a biomarker of crescentic GN.

J Am Soc Nephrol

February 2012

Division of Nephrology, Department of General Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193 Japan.

Fibroblast-specific protein 1 (FSP1)-expressing cells accumulate in damaged kidneys, but whether urinary FSP1 could serve as a biomarker of active renal injury is unknown. We measured urinary FSP1 in 147 patients with various types of glomerular disease using ELISA. Patients with crescentic GN, with or without antinuclear cytoplasmic antibody-associated GN, exhibited elevated levels of urinary FSP1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!