A series of anatomical, electrophysiological and behavioral experiments was carried out in the rat to investigate the possible functional significance of a recently demonstrated neural pathway from the substantia innominata of the subpallidal forebrain to the mesencephalic locomotor region. Following injections of the anterogradely transported lectin PHA into the substantia innominata labeled fibers with terminal boutons were observed in the zona incerta, dorsal to the medial part of the subthalamic nucleus, and some appeared to continue on to the pedunculopontine nucleus. Electrophysiological recordings of action potentials were made from neurons in the substantia innominata and some of these neurons were activated antidromically by single-pulse stimulation of the zona incerta and/or by single-pulse stimulation of the pedunculopontine nucleus as well. Neurons in the zona incerta responded orthodromically to stimulation of the substantia innominata. Locomotor activity was initiated by injecting picrotoxin, a GABA antagonist, unilaterally into the substantia innominata through chronic cannulae, as reported previously. This picrotoxin-initiated locomotor activity was reduced significantly when procaine (a neuronal blocker) was injected into the ipsilateral zona incerta. Injecting procaine into the contralateral zona incerta had little or no effect on the picrotoxin-initiated locomotor activity. Taken together these observations suggest the tentative working hypothesis that projections from the substantia innominata to the zona incerta as well as the pedunculopontine nucleus may contribute to the locomotor component of adaptive behaviors resulting from limbic forebrain integrative activities, an hypothesis that can now be investigated further.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(85)90568-2DOI Listing

Publication Analysis

Top Keywords

substantia innominata
28
zona incerta
28
locomotor activity
16
pedunculopontine nucleus
12
projections substantia
8
innominata zona
8
mesencephalic locomotor
8
locomotor region
8
contribute locomotor
8
single-pulse stimulation
8

Similar Publications

Neuroanatomical distribution of endogenous huntingtin and its immunohistochemical relationships with STB/HAP1 in the adult mouse brain and spinal cord.

Neurosci Res

January 2025

Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan; School of Human Care Studies, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nishin city, Aichi 470-0196, Japan. Electronic address:

Huntingtin-associated protein 1 (HAP1) is an essential constituent of the stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for several neurodegenerative disorders, including huntingtin (HTT) in Huntington's disease. Previous in vitro studies showed that compared to normal HTT, STB/HAP1 exhibited a higher binding affinity for mutant HTT. However, the detailed in vivo relationships of STB/HAP1 with endogenous HTT have not been clarified yet.

View Article and Find Full Text PDF

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Identifying the Brain Circuits that Regulate Pain-Induced Sleep Disturbances.

bioRxiv

December 2024

Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, 02215, USA.

Pain therapies that alleviate both pain and sleep disturbances may be the most effective for pain relief, as both chronic pain and sleep loss render the opioidergic system, targeted by opioids, less sensitive and effective for analgesia. Therefore, we first studied the link between sleep disturbances and the activation of nociceptors in two acute pain models. Activation of nociceptors in both acute inflammatory (AIP) and opto-pain models led to sleep loss, decreased sleep spindle density, and increased sleep fragmentation that lasted 3 to 6 hours.

View Article and Find Full Text PDF

Aims: The nucleus basalis of Meynert (NBM) is a major source of cholinergic innervation in the central nervous system. We aimed to investigate the characteristics of structural and functional alterations in the NBM and its projections in patients with mild cognitive impairment (MCI) and the effects of computerized cognitive training (CCT).

Methods: Forty-five patients with MCI and 45 cognitively unimpaired controls (CUCs) were recruited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!