For the intricate and infrequent safety issues of batteries, online safety fault diagnosis over stochastic working conditions is indispensable. In this work, we employ deep learning methods to develop an online fault diagnosis network for lithium-ion batteries operating under unpredictable conditions. The network integrates battery model constraints and employs a framework designed to manage the evolution of stochastic systems, thereby enabling fault real-time determination. We evaluate the performance using a dataset of 18.2 million valid entries from 515 vehicles. The results demonstrate our proposed algorithm outperforms other relevant approaches, enhancing the true positive rate by over 46.5% within a false positive rate range of 0 to 0.2. Meanwhile, we identify the trigger probability for four safety fault samples, namely, electrolyte leakage, thermal runaway, internal short circuit, and excessive aging. The proposed network is adaptable to packs of varying structures, thereby reducing the cost of implementation. Our work explores the application of deep learning for real-state prediction and diagnosis of batteries, demonstrating potential improvements in battery safety and economic benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829048PMC
http://dx.doi.org/10.1038/s41467-025-56832-8DOI Listing

Publication Analysis

Top Keywords

deep learning
12
fault diagnosis
12
online fault
8
safety fault
8
positive rate
8
fault
5
model-constrained deep
4
learning online
4
diagnosis
4
diagnosis li-ion
4

Similar Publications

Background: Hypertension is a major global health issue and a significant modifiable risk factor for cardiovascular diseases, contributing to a substantial socioeconomic burden due to its high prevalence. In China, particularly among populations living near desert regions, hypertension is even more prevalent due to unique environmental and lifestyle conditions, exacerbating the disease burden in these areas, underscoring the urgent need for effective early detection and intervention strategies.

Objective: This study aims to develop, calibrate, and prospectively validate a 2-year hypertension risk prediction model by using large-scale health examination data collected from populations residing in 4 regions surrounding the Taklamakan Desert of northwest China.

View Article and Find Full Text PDF

Prediction of protein-ligand interactions is critical for drug discovery and repositioning. Traditional prediction methods are computationally intensive and limited in modeling structural changes. In contrast, data-driven deep learning methods significantly reduce computational costs and offer a more efficient approach for drug discovery.

View Article and Find Full Text PDF

Rationale: Quantifying functional small airways disease (fSAD) requires additional expiratory computed tomography (CT) scan, limiting clinical applicability. Artificial intelligence (AI) could enable fSAD quantification from chest CT scan at total lung capacity (TLC) alone (fSAD).

Objectives: To evaluate an AI model for estimating fSAD, compare it with dual-volume parametric response mapping fSAD (fSAD), and assess its clinical associations and repeatability in chronic obstructive pulmonary disease (COPD).

View Article and Find Full Text PDF

Advanced Anticounterfeiting: Angle-Dependent Structural Color-Based CuO/ZnO Nanopatterns with Deep Neural Network Supervised Learning.

ACS Appl Mater Interfaces

March 2025

Department of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea.

Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process.

View Article and Find Full Text PDF

Deep Learning-Based Contrast Boosting in Low-Contrast Media Pre-TAVR CT Imaging.

Can Assoc Radiol J

March 2025

Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

This study investigates the impact of deep learning-based contrast boosting (DL-CB) on image quality and measurement reliability in low-contrast media (low-CM) CT for pre-transcatheter aortic valve replacement (TAVR) assessment. This retrospective study included TAVR candidates with renal dysfunction who underwent low-CM (30-mL: 15-mL bolus of contrast followed by 50-mL of 30% iomeprol solution) pre-TAVR CT between April and December 2023, along with matched standard-CM controls (n = 68). Low-CM images were reconstructed as conventional, 50-keV, and DL-CB images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!