Environmental microbiome mapping in poultry processing chain and assessment of microbial dynamics in response to different storage conditions.

Food Microbiol

Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, NA, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Italy; Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Go Vap district, Ho Chi Minh City, Viet Nam. Electronic address:

Published: June 2025

Poultry production chain comprises a complex network involving various stages from rearing to the final distribution of poultry products. This study explores the intricate dynamics within this chain, using shotgun metagenomics, particularly focusing on taxonomic and functional composition of the microbiome, antibiotic resistance and virulence potential. Moreover, the study of the impact of different packaging and storage conditions provides insights into how diverse packaging strategies and storage temperature can impact the shelf-life of chicken meat. Microbiome mapping in poultry processing facility revealed the dominance of Brochothrix thermosphacta, Pseudomonas fragi and Psychrobacter immobilis on poultry-based products and industrial surfaces. Indeed, surfaces of equipment and tools have a significant impact on the microbial composition of the final food products. Furthermore, the study of the microbiome dynamics in chicken meat stored in different packaging (air, modified atmosphere, under vacuum) and temperatures (0, 4 and 10 °C) revealed temperature-dependent microbiota shifts in chicken meat, highlighting specific spoilage organisms (SSOs) in the different packaging methods. Additionally, our results showed that poultry-based products and industrial surfaces belonging to carcasses processing area hosted elevated levels of Antibiotic Resistance Genes, mainly associated with resistance to aminoglycosides, β-lactams, MLSPs (which includes macrolides, lincosamides, streptogramins and pleuromutilins) amphenicols and tetracyclines classes and several Virulence-associated genes related to adherence, biofilm, effector delivery system, motility, nutritional/metabolic factors and regulation. Finally, our findings underscored a notably mobile resistome, showing multiple AR class correlated with mobile elements. This poses a considerable risk, emphasizing the urgent need for proactive measures in addressing potential antibiotic resistance genes dissemination in the poultry chain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2025.104734DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
12
chicken meat
12
microbiome mapping
8
mapping poultry
8
poultry processing
8
storage conditions
8
products study
8
poultry-based products
8
products industrial
8
industrial surfaces
8

Similar Publications

Background: Infection is a leading cause of death after pediatric heart transplants (PHTs). Understanding of common pathogens is needed to guide testing strategies and empiric antibiotic use.

Methods: We conducted a 3-center retrospective study of PHT recipients ≤18 years old presenting to cardiology clinics or emergency departments (EDs) from 2010 to 2018 for evaluation of suspected infections within 2 years of transplant.

View Article and Find Full Text PDF

Evolution of gene expression frequently drives antibiotic resistance in bacteria. We had previously (Patel and Matange, , 2021) shown that, in , mutations at the locus were beneficial under trimethoprim exposure and led to overexpression of dihydrofolate reductase (DHFR), encoded by the gene. Here, we show that DHFR levels are further enhanced by spontaneous duplication of a genomic segment encompassing and spanning hundreds of kilobases.

View Article and Find Full Text PDF

Combatting antibiotic resistance in Gardnerella vaginalis: A comparative in silico investigation for drug target identification.

PLoS One

March 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.

Gardnerella vaginalis is the most frequently identified bacterium in approximately 95% of bacterial vaginosis (BV) cases. This species often exhibits resistance to multiple antibiotics, posing challenges for treatment. Therefore, there is an urgent need to develop and explore alternative therapeutic strategies for managing bacterial vaginosis.

View Article and Find Full Text PDF

Single-Bacterium Diagnosis via Terahertz Near-Field Dielectric Nanoimaging.

ACS Appl Mater Interfaces

March 2025

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.

Single-bacterium diagnostic methods with unprecedented precision and rapid turnaround times are promising tools for facilitating the transition from empirical treatment to personalized anti-infection treatment. Terahertz (THz) radiation, a cutting-edge technology for identifying pathogens, enables the label-free and non-destructive detection of intermolecular vibrational modes and bacterial dielectric properties. However, this individual dielectric property-based detection and the mismatched spatial resolution are limited for the single-bacterium identification of various species of pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!