Cronobacter spp. is an opportunistic pathogen that cause serious infections in all age groups. The organism has frequently been isolated from plant-based foods, especially cereals. Therefore, this study determined the occurrence, molecular characterization and tolerance of Cronobacter in fermented corn products (FCP) in China. Isolates were speciated and genotyped according to multilocus sequence typing (MLST), which included the pathogenicity associated allele ompA, as well as serotyping. Twenty-two strains of Cronobacter (20 C. sakazakii and 2 C. muytjensii) were isolated from 216 FCP samples, such as fermented corn noodles, fermented corn doughs, fermented corn vermicelli, fermented corn flour paste, fermented corn beverage, and fermented corn bread. All Cronobacter isolates were divided into 8 sequence types (STs), 4 serotypes and 4 ompA genotypes. The dominant type (10/22) was C. sakzakii ST8, C. sakazakii serotypes O:2, and ompA5, mainly in fermented corn noodle and fermented corn dough. Of all the strains, Cronobacter strains with ST770 had a stronger ability to tolerate acid, osmotic stress and cold, while Cronobacter strains with ST8 had a weaker tolerance to acid, osmotic stress and cold. Eight isolates exhibited strong biofilm-forming ability (OD > 1), among which the ST770, ST771, and ST556 strains showed more pronounced abilities. All Cronobacter isolates were sensitive to amoxicillin/clavulanic acid, ceftazidime, aztreonam, meropenem, tetracycline, ciprofloxacin, trimethoprim/sulfamethoxazole, polymyxin B, and chloramphenicol, while 77.27% of isolates were resistant to cefotaxime. This study supports the concern of Cronobacter transmission through plant-based foods, and provides a theoretical basis for the prevention and control of this pathogen in FCP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2025.104736DOI Listing

Publication Analysis

Top Keywords

fermented corn
40
fermented
10
corn
10
cronobacter
9
occurrence molecular
8
molecular characterization
8
characterization tolerance
8
tolerance cronobacter
8
cronobacter spp
8
corn products
8

Similar Publications

Metabolomics Study Revealed the Effects of CaO-Treated Maize Straw on the Rumen Metabolites.

Animals (Basel)

February 2025

Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China.

As an important limiting factor, lignin hinders the utilization rate of maize straw in ruminants. CaO treatment increases the feed digestibility of maize straw by disrupting the ester bonds between hemicellulose, cellulose, and lignin in maize straw. Our previous research found that CaO treatment of corn straw may increase its feed digestibility by altering the rumen microbes' abundance.

View Article and Find Full Text PDF

High-value recycling of agro-industrial by-products is the focus of global sustainable development. A method of the recovery and utilization of corn-ethanol co-product to produce functional lipids via Aspergillus niger (A. niger) was proposed.

View Article and Find Full Text PDF

Effects of partial silage replacement with corn stover pellets on the rumen microbiota and serum metabolome of breeding cows.

Front Microbiol

February 2025

Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.

Introduction: Straw pellet ration replacing part of silage is of great significance for farmers to save farming costs and solve the lack of feed resources. A comprehensive analysis of rumen microbial and serum metabolite compositions is conducted to promote the development of the modern breeding cows-feeding industry.

Methods: In this study, 18 healthy 2-year-old Simmental breeding cows weighing 550 ± 20 kg were selected and randomly divided into two groups.

View Article and Find Full Text PDF

Acetic acid production from corn straw via enzymatic degradation using putative acetyl esterase from the metagenome assembled genome.

Enzyme Microb Technol

March 2025

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China. Electronic address:

Acetic acid production from corn straw by enzyme catalysis shows its application value in food industry. In this study, a gene encoding for a putative acetyl esterase derived from Sphingobacterium soilsilvae Em02 was discovered in metagenome assembled genome. The gene was expressed in Escherichia coli BL21 to obtain enzyme with a molecular mass of 38.

View Article and Find Full Text PDF

Despite being abundantly available and nutritious, corn stover and Ceara rubber tree leaves are rarely used as livestock feed. However, these agriculture byproducts contain hard to digest nutrients to be used as feed for livestock. This study evaluates the fermentation characteristics (pH levels, ammoniacal nitrogen (N-NH3), and total volatile fatty acid (VFA) production and nutrient digestibility (dry matter digestibility_DMD, organic matter digestibility_OMD) of a silage-based diet composed of a mixture of corn stover and Ceara rubber tree leaves in Etawa crossbred goats in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!