Retinitis pigmentosa (RP) is a hereditary neurodegenerative disease characterized by the degeneration of photoreceptors caused by mutations in various genes. Increasing evidence suggests that mitochondrial biogenesis plays a critical role in many neurodegenerative diseases. This study investigated the role of mitochondrial biogenesis in rd1 mice, a widely recognized model of RP. Male C57BL/6 mice and age-matched rd1 mice were used for in vivo experiments, while HO was employed on 661w cells to establish an in vitro model. Our findings revealed that mitochondrial biogenesis and the regulatory PGC-1α/NRF-1/TFAM pathway were significantly downregulated in rd1 mice. Treatment with ZLN005, a PGC-1α agonist, markedly improved visual function in rd1 mice and alleviated thinning of the retinal outer nuclear layer. Additionally, ZLN005 enhanced mitochondrial biogenesis and restored mitochondrial function in photoreceptors. Further analysis in vitro confirmed that ZLN005 rescued photoreceptor degeneration by promoting mitochondrial biogenesis through the PGC-1α/NRF-1/TFAM pathway. In summary, our results highlight the critical role of mitochondrial biogenesis and the PGC-1α/NRF-1/TFAM pathway in the progression of RP. This offers a potential strategy to delay photoreceptor degeneration in RP by maintaining mitochondrial function and could be combined with existing therapies for improving treatment outcomes through synergistic pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2025.110361 | DOI Listing |
Front Nutr
February 2025
Training Section, Yantai Shooting and Archery Sports Center, Yantai, Shandong, China.
Honey bees extract sticky material from the exudates of different plants which transform afterwards to propolis. Propolis from several global locations has been shown to contain a wide variety of polyphenolic chemicals. Recent studies have revealed that propolis possesses antioxidant, anti-inflammatory, and immunomodulatory abilities.
View Article and Find Full Text PDFInt J Mol Sci
March 2025
Center for Reproductive Medicine, Jilin Medical University, Jilin 132013, China.
This study investigates the effects of astaxanthin on oxidative stress, mitochondrial function, and follicular development in mouse preantral follicles, with a focus on the involvement of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Astaxanthin (2.5 nM) significantly enhanced both the antrum formation (from 85.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
Mitochondria are involved in a wide array of critical cellular processes from energy production to cell death. The morphology (size and shape) of mitochondrial compartments is highly responsive to both intracellular and extracellular conditions, making these organelles highly dynamic. Nutrient levels and stressors both inside and outside the cell inform the balance of mitochondrial fission and fusion and the recycling of mitochondrial components known as mitophagy.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
College of Veterinary Medicine, China Agricultural University, Beijing 100083, China.
Skin aging is the most prominent phenotype of host aging and is the consequence of a combination of genes and environment. Improving skin aging is essential for maintaining the healthy physiological function of the skin and the mental health of the human body. Mitochondria are vital organelles that play important roles in cellular mechanisms, including energy production and free radical balance.
View Article and Find Full Text PDFJ Biol Chem
March 2025
Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA. Electronic address:
Iron-sulfur (FeS) protein biogenesis in eukaryotes is mediated by two different machineries - one in the mitochondria and another in the cytoplasm. Glutaredoxin 5 (Grx5) is a component of the mitochondrial iron-sulfur cluster (ISC) machinery. Here we define the roles of Grx5 in maintaining overall mitochondrial/cellular FeS protein biogenesis, utilizing mitochondria and cytoplasm isolated from Saccharomyces cerevisiae cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!