In this work, the structure and morphology of NiCoS (NCS) were modulated by varying the anion types (Cl, CHCOO, and NO) of nickel and cobalt salts. Extensive material characterization and analyses revealed that the grain size of the obtained NCSs was determined by different solvation free energies, capping effects, and steric hindrance during the crystal growth process. Among these three anions, Cl, with the smallest ionic size, exhibited the lowest capping effect, steric hindrance, and solvation free energy, leading to the largest average grain size of 15.34 nm for Cl-based NiCoS (NCS-C). Moreover, the sea urchin-like morphology of NCS-C provided a high reaction interface for electrochemical energy storage. As a result, the specific capacitance of NCS-C could reach 1112.4 F/g at a current density of 6 A/g, retaining 692 F/g even at a high current density of 16 A/g. The assembled asymmetric supercapacitor could also deliver a high energy density of 23.4 Wh kg. This work highlights the significant influence of anion type on the structural and morphological evolution of NCS materials, providing new insights for the development of high-rate NCS-based electrode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.02.057DOI Listing

Publication Analysis

Top Keywords

structure morphology
8
morphology nicos
8
varying anion
8
anion types
8
nickel cobalt
8
cobalt salts
8
grain size
8
solvation free
8
steric hindrance
8
current density
8

Similar Publications

Cerebral asymmetries in schizophrenia.

Handb Clin Neurol

March 2025

Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.

Historically, the first observations of a lower prevalence of right-handed patients among subjects with schizophrenia led to the hypothesis that brain asymmetry could play a significant role in the etiopathogenesis of the disease. Over the last decades, a growing number of findings obtained through many different techniques such as EEG, MEG, MRI, and fMRI, consistently reported reduction/loss of brain asymmetries as a core feature of schizophrenia, further suggesting such alterations to play a cardinal role in the pathogenesis of the disease. Moreover, several cognitive and psychopathologic dimensions have shown significant correlations with the reduced degree of asymmetry.

View Article and Find Full Text PDF

The relationship between brain and visceral asymmetry: Evidence from situs inversus in humans.

Handb Clin Neurol

March 2025

Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium. Electronic address:

This review examines the relationship between visceral and brain asymmetry and explores whether their alignment observed in some vertebrate species also exists in humans. While the development of visceral and brain asymmetry may have occurred for different reasons, it is possible that the basic mechanisms for left-right differentiation of the visceral system were duplicated in the brain. We describe the main phenotypical anomalies and the general mechanism of left-right differentiation in vertebrates, followed by a systematic review of available human studies on behavioral and brain asymmetry in individuals with reversed visceral organization.

View Article and Find Full Text PDF

Latent dimensions of brain asymmetry.

Handb Clin Neurol

March 2025

Department of Psychology and Behavioral Sciences & The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Department of Psychiatry of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. Electronic address:

Functional lateralization represents a fundamental aspect of brain organization, where certain cognitive functions are specialized in one hemisphere over the other. Deviations from typical patterns of lateralization often manifest in various brain disorders, such as autism spectrum disorder, schizophrenia, and dyslexia. However, despite its importance, uncovering the intrinsic properties of brain lateralization and its underlying structural basis remains challenging.

View Article and Find Full Text PDF

Cerebellar asymmetries.

Handb Clin Neurol

March 2025

Western Institute for Neuroscience, Western University, London, ON, Canada; Department of Computer Science, Western University, London, ON, Canada; Department of Statistical and Actuarial Sciences, Western University, London, ON, Canada.

The cerebellum is a subcortical structure tucked underneath the cerebrum that contains the majority of neurons in the brain, despite its small size. While it has received less attention in the study of brain asymmetries than the cerebrum, structural asymmetries in the cerebellum have been found in cerebellar volume that mirror cerebral asymmetries. Larger cerebellar structures have been reported on the right compared to the left, either for the whole cerebellar hemisphere or the anterior part of the cerebellum, with the latter accompanied by a left increase in the posterior cerebellum.

View Article and Find Full Text PDF

Asymmetries in the human brain.

Handb Clin Neurol

March 2025

Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, The Netherlands; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands. Electronic address:

The human brain is an intricate network of cortical regions interconnected by white matter pathways, dynamically supporting cognitive functions. While cortical asymmetries have been consistently reported, the asymmetry of white matter connections remains less explored. This chapter provides a brief overview of asymmetries observed at the cortical, subcortical, cytoarchitectural, and receptor levels before exploring the detailed connectional anatomy of the human brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!