Biofabrication represents a promising technique for creating tissues for regeneration or as models for drug testing. Collagen-based hydrogels are widely used as suitable matrix owing to their biocompatibility and tunable mechanical properties. However, one major challenge is that the encapsulated cells interact with the collagen matrix causing construct shrinkage. Here, we present a hydrogel with high shape fidelity, mimicking the major components of the extracellular matrix. We engineered a composite hydrogel comprising gallic acid (GA)-functionalized hyaluronic acid (HA), collagen I, and HA-coated multiwall carbon nanotubes (MWCNT). This hydrogel supports cell encapsulation, exhibits shear-thinning properties enhancing injectability and printability, and importantly significantly mitigates shrinkage when loaded with human fibroblasts compared to collagen I hydrogels (∼20 % vs. > 90 %). 3D-bioprinted rings utilizing human fibroblast-loaded inks maintain their shape over 7 days in culture. Furthermore, inclusion of HAGA into collagen I hydrogels increases mechanical stiffness, radical scavenging capability, and tissue adhesiveness. Notably, the here developed hydrogel is also suitable for human induced pluripotent stem cell-derived cardiomyocytes and allows printing of functional heart ventricles responsive to pharmacological treatment. Cardiomyocytes behave similar in the newly developed hydrogels compared to collagen I, based on survival, sarcomere appearance, and calcium handling. Collectively, we developed a novel material to overcome the challenge of post-fabrication matrix shrinkage conferring high shape fidelity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2025.123174 | DOI Listing |
BME Front
March 2025
Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
This study aims to develop and characterize electroactive hydrogels based on reduced bacterial cellulose (BC) and TiCT -MXene for their potential application in wound healing and real-time monitoring. The integration of TiCT -MXene into BC matrices represents a novel approach to creating multifunctional hydrogels that combine biocompatibility, electrical conductivity, and mechanical durability. These properties make the hydrogels promising candidates for advanced wound care and real-time monitoring applications.
View Article and Find Full Text PDFInt Wound J
March 2025
Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
Modern wound dressings have revolutionised wound care, offering optimal healing environments. However, their widespread use has led to a significant increase in allergic reactions, particularly among patients with chronic leg ulcers. The complex chemical compositions of these dressings can trigger allergic responses.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this paper, the dispersion stability of graphene was effectively promoted by the introduction of hydroxypropyl cellulose (HPC), a novel composite hydrogel PAM-LMA-PDA@TiO-GN was prepared. Polyacrylamide (PAM) provided the basic three-dimensional network structure, lauryl methacrylate (LMA), as the hydrophobic monomer, constructed the hydrophobic associative micro-regions inside the hydrogel, which enhanced the structural stability, and polydopamine-coated TiO (PDA@TiO), as a nano-toughness enhancement point, which endowed the hydrogel with a stress and strain of 1026 kPa and 2519 %, respectively. Hydrogels loaded with Ag nanowires (Ag NWs) and graphene (GN) were prepared using Ag nanowires as the intercalating agent, graphene as the substrate and hydrogel as the carrier, graphene and Ag nanowires endow the hydrogels with excellent electron transport capabilities.
View Article and Find Full Text PDFBiomacromolecules
March 2025
Department of Bioproducts and Biosystems, Aalto University, Aalto FI-00076, Finland.
Cellulose nanocrystal (CNC) fillers have been shown to significantly improve the performance of polymer composites and hydrogels, elevating both strength and toughness. Polymer grafting from the surface of the nanocrystals has been employed to enhance matrix-filler interactions and keep the fillers dispersed within the matrix. However, such approaches often rely on multistep syntheses and diligent process control.
View Article and Find Full Text PDFNanoscale
March 2025
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
The structural design of light-weight MXene-polymer composites has attracted significant interest for enhancing both electromagnetic interference (EMI) shielding performance and mechanical strength, which are critical for practical applications. However, a systematic understanding of how various structural configurations of MXene composites affect EMI shielding is lacking. In this study, light-weight TiCT-PVA composites were fabricated in three structural forms, hydrogel, aerogel, and compact film, while varying the TiCT areal density (14 to 20 mg cm) to elucidate the role of structural design in X-band EMI shielding and mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!