Lactate derived from aerobic glycolysis is crucial for DNA damage repair and chemoresistance. Nevertheless, it is frequently noted that cancer cells depend on glutaminolysis to replenish essential metabolites. Whether and how glutaminolysis might enhance lactate production and facilitate DNA repair in cancer cells remains unknown. Here, it is shown that malate enzyme 2 (ME2), which metabolizes glutamine-derived malate to pyruvate, contributes to lactate production and chemotherapy resistance in ovarian cancer. Mechanistically, chemotherapy reduces the expression of glucose transporters and impairs glucose uptake in cancer cells. The resultant decrease in intracellular glucose levels triggers the acetylation of ME2 at lysine 156 by ACAT1, which in turn potentiates ME2 enzyme activity and facilitates lactate production from glutamine. ME2-derived lactate contributes to the development of acquired chemoresistance in cancer cells subjected to prolonged chemotherapy, primarily by facilitating the lactylation of proteins involved in homologous recombination repair. Targeting ACAT1 to inhibit ME2 acetylation effectively reduced chemoresistance in both in vitro and in vivo models. These findings underscore the significance of acetylated ME2-mediated lactate production from glutamine in chemoresistance, particularly under conditions of reduced intracellular glucose within cancer cell, thereby complementing the Warburg effect and offering new perspectives on the metabolic links to chemotherapy resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202416467DOI Listing

Publication Analysis

Top Keywords

lactate production
20
cancer cells
16
me2 acetylation
8
ovarian cancer
8
chemotherapy resistance
8
intracellular glucose
8
production glutamine
8
cancer
7
lactate
7
chemoresistance
5

Similar Publications

Bifidobacterium bifidum 1007478 derived indole-3-lactic acid alleviates NASH via an aromatic hydrocarbon receptor-dependent pathway in zebrafish.

Life Sci

March 2025

Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Tsinghua University, Beijing 100084, China. Electronic address:

Aims: This study investigates the potential of Bifidobacterium bifidum 1,007,478 (BB478) and its metabolite indole-3-lactic acid (ILA) in alleviating non-alcoholic steatohepatitis (NASH) induced by a high-fat diet (HFD) and fructose exposure.

Materials And Methods: A zebrafish model of NASH was established by exposure to HFD and fructose. BB478 was administered, and the effects on liver lipid accumulation, oxidative stress, and inflammation were assessed.

View Article and Find Full Text PDF

Synergistic regulation of colon microflora and metabolic environment by resistant starch and sodium lactate in hyperlipidemic rats.

Int J Biol Macromol

March 2025

College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Type 3 resistant starch (RS3) regulates diet-related metabolic diseases by promoting intestinal short-chain fatty acids (SCFAs) and lactate production, and facilitating microbial lactate-to-butyrate fermentation. However, its precise in vivo mechanism remains unclear. Therefore, we studied the effects of type 3 lotus seed resistant starch (LRS3) and sodium lactate (SL) on colonic microbiota composition, metabolism, and lipid parameters.

View Article and Find Full Text PDF

Lactate: A key regulator of the immune response.

Immunity

March 2025

College of Medicine and Health, University of Birmingham, Birmingham, UK. Electronic address:

Lactate, the end product of both anaerobic and aerobic glycolysis in proliferating and growing cells-with the latter process known as the Warburg effect-is historically considered a mere waste product of cell and tissue metabolism. However, research over the past ten years has unveiled multifaceted functions of lactate that critically shape and impact cellular biology. Beyond serving as a fuel source, lactate is now known to influence gene expression through histone modification and to function as a signaling molecule that impacts a wide range of cellular activities.

View Article and Find Full Text PDF

A potential anti-Helicobacter pylori strategy: Exploring the antibacterial mechanism of organic acids in sea buckthorn (Hippophae rhamnoides L.).

Microbiol Res

March 2025

State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China. Electronic address:

Helicobacter pylori (H. pylori) infection is a highly prevalent causative agent of various gastric diseases. The search for natural alternatives to antibiotics that can effectively inhibit H.

View Article and Find Full Text PDF

sPLA2-IB and PLA2R Mediate Aberrant Glucose Metabolism in Podocytes via Hyperactivation of the mTOR/HIF-1α Pathway.

Cell Biochem Biophys

March 2025

Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China.

Secretory phospholipase A2 group IB (sPLA2-IB) and M-type phospholipase A2 receptor (PLA2R) are closely related to proteinuria and idiopathic membranous nephropathy (IMN). Podocytes are important components of the glomerular filtration barrier and glucose metabolism, including glycolysis and tricarboxylic acid (TCA) cycle, is crucial for maintaining podocyte physiological function. Aberrant energy metabolism has been reported in proteinuria diseases, including diabetic nephropathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!