Antibiotics that operate multiple mechanisms of action are a promising strategy to combat growing resistance. Previous studies have shown that dual action antifolates formed from a pyrroloquinazolinediamine core can inhibit the growth of bacterial pathogens without developing resistance. In this work, we expand the scope of dual action antifolates by repurposing the 2,4-diamino-1,6-dihydro-1,3,5-triazine (DADHT) cycloguanil scaffold to a variety of derivatives designed to inhibit dihydrofolate reductase (DHFR) and disrupt bacterial membranes. Dual mechanism DADHTs have activity against a variety of target pathogens, including , , and , among other organisms. Through X-ray crystallography, we confirmed engagement of the DHFR target and found that some DADHTs stabilize a previously unobserved conformation of the enzyme but, broadly, bind in the occluded conformation. Using inhibition of purified and DHFR and disruption of membranes, we determined that alkyl substitution of dihydrotriazine at the 6-position best optimizes the DADHT's two mechanisms of action. By employing both mechanisms, the DADHT spectrum of activity was extended beyond the scope of traditional antifolates. We are optimistic that the dual mechanism approach, particularly through the action of antifolates, offers a unique means of combating hard-to-treat bacterial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.4c00768 | DOI Listing |
Cortex
March 2025
Trinity Institute of Neurosciences, Trinity College Dublin, Ireland.
Recent studies have demonstrated that the representation of peri-personal space (PPS) can be strongly modulated by the intention to execute a spatially-directed hand-movement. However, the question of whether analogous motor-induced PPS modulations can be observed during the planning and execution of goal-directed lower limbs movements has been scarcely investigated. Here we asked whether changes in the visuo-tactile PPS maps occur during the planning of a goal directed foot-movement.
View Article and Find Full Text PDFJ Allergy Clin Immunol
March 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn. Electronic address:
Background: The few reported patients with pathogenic IRF8 variants have manifested 2 distinct phenotypes: (1) an autosomal recessive severe immunodeficiency with significant neutrophilia and absence of or significant decrease in monocytes and dendritic cells and (2) a dominant-negative form with only a decrease in conventional type 2 dendritic cells (cDC2s) and susceptibility to mycobacterial disease.
Objectives: Genetic testing of a child with persistent EBV viremia identified a novel IRF8 variant: c.1279dupT (p.
Adv Sci (Weinh)
March 2025
Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark.
In the advancing field of optoelectronics, multifunctional devices that integrate both detection and processing capabilities are increasingly desirable. Here, a gate-tunable dual-mode optoelectronic device based on a MoTe/MoS van der Waals heterostructure, designed to operate as both a self-powered photodetector and an optoelectronic synapse, is reported. The device leverages the photovoltaic effect in the MoTe/MoS PN junction for self-powered photodetection and utilizes trapping states at the SiO/MoS interface to emulate synaptic behavior.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
February 2025
Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Russia.
Unlabelled: Drought is a natural disaster that exerts considerable adverse impacts on the agricultural sector. This study aimed to investigate the cytokinin-mediated carbohydrate accumulation in the aerial parts of the plant and the roots in four-month-old drought-stressed tall fescue ( Schreb.) plants.
View Article and Find Full Text PDFDrug Deliv Transl Res
March 2025
Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S. Nagar, Punjab, 160062, India.
Owing to faulty DNA damage repair system, triple negative breast cancer (TNBC) exhibits high susceptibility towards DNA damaging drugs such as platinum compounds e.g., oxaliplatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!