Traditional imaging modalities used to monitor the diameter of aortic aneurysms (AAs) often fail to follow pathological progression. Fibroblast activation protein (FAP), a key regulator of extracellular matrix (ECM) remodeling, plays a pivotal role in aortic disease. However, its expression in the aortic wall during aneurysm progression and its potential correlation with disease severity remains unexplored. Here, utilizing histology the levels of FAP are higher in the aortic wall of patients with AA compared to healthy controls. In three distinct animal models of AA, a progressive increase in FAP expression, coincides with the advancement of ECM remodeling. Notably, the levels of Ga-FAPI-04 uptake in a rabbit model of abdominal AA (AAA) is positively correlated with aortic dilation (r = 0.84, p < 0.01), and the histological examination further confirmed that regions of high Ga-FAPI-04 uptake exhibited both increased FAP expression and more severe pathological changes. The Ga-FAPI-04 imaging in AA patients showed that the radiotracer specifically accumulated in the aortic walls of persistently dilated AA. These findings suggest that Ga-FAPI-04 positron emission tomographic (PET) imaging, by visualizing FAP localization, allows for a non-invasive approach to potentially monitor ECM remodeling during the AA progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202411152 | DOI Listing |
Cells
February 2025
NUS Bia-Echo Asia Centre of Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
The ovary is a dynamic organ where mechanical forces profoundly regulate follicular development, oocyte maturation, and overall reproductive function. These forces, originating from the extracellular matrix (ECM), granulosa and theca cells, and ovarian stroma, influence cellular behavior through mechanotransduction, translating mechanical stimuli into biochemical responses. This review explores the intricate interplay between mechanical cues and ovarian biology, focusing on key mechanosensitive pathways such as Hippo signaling, the PI3K/AKT pathway, and cytoskeletal remodeling, which govern follicular dormancy, activation, and growth.
View Article and Find Full Text PDFCells
February 2025
Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
Cardiac fibrosis is a major driver of heart failure, a leading cause of morbidity and mortality worldwide. Advances in single-cell transcriptomics have revealed the pivotal role of SPP1+ macrophages in the pathogenesis of cardiac fibrosis, positioning them as critical mediators and promising therapeutic targets. SPP1+ macrophages, characterized by elevated expression of () and often co-expressing (), localize to fibrotic niches in the heart and other organs.
View Article and Find Full Text PDFCell Mol Life Sci
March 2025
Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
The bone marrow microenvironment contains heterogeneous stromal cells, which are critical for bone remodeling and provide essential supportive roles for hematopoietic functions. Although the diversity of PDGFRαβ mesenchymal stromal/stem cells (MSCs) get consensus, the osteo-lineage cells (OLCs) that constitute the developmental trajectory of osteoblasts are largely remain unclear. Here, we construct a comprehensive atlas of stromal cell via performing integrative single cell analyses for 77 samples from 14 datasets.
View Article and Find Full Text PDFMater Horiz
March 2025
CÚRAM Research Ireland Center for Medical Devices, University of Galway, Galway H91 W2TY, Ireland.
Multiple sclerosis (MS) is the main neurodegenerative disorder among young adults. Cortical involvement in MS has emerged as an important determinant of disease progression. Although inflammation is recognized as a key feature, the mechanisms of cortical pathology are still poorly understood.
View Article and Find Full Text PDFSheng Li Xue Bao
February 2025
Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China.
A disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) represent a diverse family of secreted metalloproteinases, comprising 19 distinct members categorized into five groups based on their substrate specificity: proteoglycanases, procollagen N-peptidases, von Willebrand factor-cleaving protease, cartilage oligomeric matrix proteases and other proteases. Among these, ADAMTS proteoglycanases predominantly target hyalectans, pivotal components in extracellular matrix (ECM) remodeling and inflammation. Dysfunction of ADAMTS proteoglycanases disrupts the structure and function of hyalectans, thereby perturbing ECM homeostasis, resulting in reproduction disorders, including abnormal follicular development, ovulation dysfunction, impaired implantation, placentation and preterm labor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!