Inhibiting the fibrotic aggregation of the human islet amyloid polypeptide (hIAPP) and accelerating aggregate clearance are crucial factors in type II diabetes regulation. Autophagy plays a central role in hIAPP fibrotic degradation. We investigated how the coix seed prolamin-derived active peptide (LPFYPN, LP6) and its modifying peptides affect hIAPP aggregation and autophagic processes in induced rat insulinoma (INS-1) cells. Both LP6 and its modified peptides inhibited the fibrotic aggregation of hIAPP, an effect related to the binding site within the core region of hIAPP. Additionally, LP6 and the modified peptides reduced hIAPP-induced cytotoxicity, enhanced LC3-II/LC3-I, decreased p62 protein levels, and promoted autophagy by inhibiting the PI3K-Akt-mTOR signaling pathway, thereby upregulating ULK-1 and Beclin-1 expression. Finally, LP6 modified with selenium showed superior inhibition of hIAPP aggregation and cytotoxicity as well as regulation of autophagic flow. These findings emphasize the potential of LP6 and its modified peptides in regulating type II diabetes and other amyloid-related diseases and indicate that they could be further developed as novel functional food ingredients against type 2 diabetes mellitus (T2DM).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c12559 | DOI Listing |
J Am Coll Cardiol
March 2025
National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom.
Background: Transthyretin amyloid cardiomyopathy (ATTR-CM) is an underdiagnosed chronic disease associated with progressive heart failure that results in impaired quality of life, repeated hospitalizations, and premature death. Acoramidis is a selective, oral transthyretin stabilizer recently approved by the U.S.
View Article and Find Full Text PDFJ Mol Cell Cardiol
March 2025
Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99163-1062, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163-1062, USA. Electronic address:
Sarcomere length-dependent activation (LDA) is essential to engaging the Frank-Starling mechanism in the beat-to-beat regulation of cardiac output. Through LDA, the heart increases the Ca sensitivity of myocardial contraction at a longer sarcomere length, leading to an enhanced maximal force at the same level of Ca. Despite its importance in both normal and pathological states, the molecular mechanism underlying LDA, especially the origin of the sarcomere length (SL) induced increase in myofilament Casensitivity, remains elusive.
View Article and Find Full Text PDFJ Immunol
February 2025
Vaccine Research Institute, Université Paris-Est Créteil, Créteil, France.
The 2022 Mpox virus (MPXV) outbreak revitalized questions about immunity against MPXV and vaccinia-based vaccines (VAC-V), but studies are limited. We analyzed immunity against MPXV in individuals infected with MPXV or vaccinated with the licensed modified vaccinia Ankara (MVA) Bavarian Nordic or an experimental MVA-HIVB vaccine. The frequency of neutralizing antibody responders was higher among MPXV-infected individuals than MVA vaccinees.
View Article and Find Full Text PDFSci Transl Med
March 2025
Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
Interstitial lung disease (ILD) consists of a group of immune-mediated disorders that can cause inflammation and progressive fibrosis of the lungs, representing an area of unmet medical need given the lack of disease-modifying therapies and toxicities associated with current treatment options. Tissue-specific splice variants (SVs) of human aminoacyl-tRNA synthetases (aaRSs) are catalytic nulls thought to confer regulatory functions. One example from human histidyl-tRNA synthetase (HARS), termed HARS because the splicing event resulted in a protein encompassing the WHEP-TRS domain of HARS (a structurally conserved domain found in multiple aaRSs), is enriched in human lung and up-regulated by inflammatory cytokines in lung and immune cells.
View Article and Find Full Text PDFAcc Chem Res
March 2025
Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
ConspectusProteins and peptides occur ubiquitously in organisms and play key functional roles, as structural elements and catalysts. Their major natural source is ribosomal synthesis, which produces polypeptides from 20 amino acid building blocks. Peptides containing noncanonical amino acids have long been prepared by chemical synthesis, which has provided a wealth of physiologically active compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!