Enhancing payload encapsulation stability while enabling controlled drug release are both critical objectives in drug delivery systems but are challenging to reconcile. This study introduces a zwitterionic conjugated electrolyte (CE) molecule named Zwit, which acts as a molecular Trojan by mimicking the lipid bilayers. When integrated into liposome membranes, Zwit rigidifies the bilayer structure likely due to its hydrophobic interactions providing structural support, thus inhibiting drug leakage. Upon 808 nm laser excitation, Zwit rapidly accelerates DOX release from liposome core, likely due to light-triggered conformational changes or photothermal effects that compromise membrane permeability. These findings demonstrate Zwit's ability to overcome the challenge of simultaneously preventing premature payload leakage and enabling stimuli-responsive drug release with a single component. Additionally, Zwit exhibits excellent biocompatibility with membranes, outperforming its quaternary ammonium counterpart and commonly used dye indocyanine green (ICG). By harnessing its NIR-II emission, Zwit enables durable in vivo biodistribution tracking of nanocarriers, whereas ICG suffers from significant dye leakage. In subcutaneous tumor models, the synergistic effects of chemotherapy and thermotherapy facilitated by this light-triggered system induced a potent antitumor immune response, further enhancing anticancer efficacy. This work underscores the potential of membrane-mimicking CEs as multifunctional tools in advanced drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202415705 | DOI Listing |
Mol Pharm
March 2025
Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Positive surgical margins following radical prostatectomy significantly contribute to tumor recurrence. While systemic chemotherapy demonstrates limited efficacy in this context, local chemotherapy drug delivery systems based on nanomaterials offer promising strategies to address this issue by modifying drug release kinetics and distribution, thereby enhancing antitumor effects while minimizing the toxicities associated with systemic chemotherapy. In this study, we utilized electrospun nanofibrous mats loaded with docetaxel for sustained drug delivery.
View Article and Find Full Text PDFJ Immunol
February 2025
Orthopedics Department, Central Hospital of Ezhou, Ezhou, China.
Diabetic nephropathy is a severe chronic complication characterized by cytotoxicity, inflammation, and fibrosis, ultimately leading to renal failure. This study systematically investigated the effects of the PARP1 inhibitor PJ-34 on high glucose-induced cytotoxicity, inflammation, and fibrosis in HK-2 cells, as well as its improvement on neuropathic pain response and transforming growth factor β (TGFβ) expression in a type 1 diabetes mellitus diabetic nephropathy mouse model. Through cellular and animal experiments, we observed that PJ-34 significantly enhanced the proliferative capacity of cells damaged by high glucose, reduced apoptosis, and decreased the release of proinflammatory factors TGFα, interleukin-6, and interleukin-1β.
View Article and Find Full Text PDFSci Transl Med
March 2025
Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
Postoperative abdominal adhesions are the leading cause of bowel obstruction and a cause of chronic pain and infertility. Adhesion formation occurs after 50 to 90% of abdominal operations and has no proven preventative or treatment strategy. Abdominal adhesions derive primarily from the visceral peritoneum and are composed of polyclonally proliferating tissue-resident fibroblasts.
View Article and Find Full Text PDFTissue Eng Regen Med
March 2025
Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
Background: Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS).
Methods: To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer.
Med Oncol
March 2025
Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India.
Cancer continues to be a significant global health concern, consistently ranking as one of the leading causes of mortality across diverse populations and socio-economic contexts. Genistein, a soy-derived isoflavonoid, has gained significant attention for its diverse health benefits, particularly its potent anticancer activity. Emerging pre-clinical and clinical evidences highlights its ability to modulate key cellular processes, including apoptosis, autophagy, angiogenesis, metastasis, immune responses and cell cycle regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!