Two-dimensional (2D) organic-inorganic halide perovskites are solution-processable semiconductors that are promising for optoelectronic applications. Understanding crystallization mechanisms to achieve control over nanostructures is important for optimizing desired properties. Here we introduce a versatile strategy to synthesize spiral microplates of diverse 2D perovskites at the air-water interface through screw-dislocation-driven growth. Spirals of 11 2D perovskite compositions (LA)(A)PbX with different spacer (LA) cations, A-cations, halide (X) anions, and -number can be grown. They typically consist of single- or few-layer perovskite step heights but exhibit stacking complexity when multiple dislocations interact. The spiral microplates exhibit the characteristic optical properties (photoluminescence and second-harmonic generation) of the underlying 2D perovskites. Fluorescence-detected circular dichroism imaging shows that the chirality of the spiral center does not translate to the observed chiroptical properties of the microplate, consistent with the length scale of the chiral distortion. This solution growth of perovskite spirals diversifies the perovskite microstructures for optoelectronics and other applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.5c00273 | DOI Listing |
Nano Lett
February 2025
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Two-dimensional (2D) organic-inorganic halide perovskites are solution-processable semiconductors that are promising for optoelectronic applications. Understanding crystallization mechanisms to achieve control over nanostructures is important for optimizing desired properties. Here we introduce a versatile strategy to synthesize spiral microplates of diverse 2D perovskites at the air-water interface through screw-dislocation-driven growth.
View Article and Find Full Text PDFNano Lett
January 2023
Hunan Institute of Optoelectronic Integration and Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, School of Physics and Electronic Science, Hunan University, Changsha410082, China.
Here a continuous axial-spiral phase microplate (CAsPP), based on combining a logarithmic axicon and a spiral phase plate, was proposed for generating high-quality higher-order Bessel vortex beams. The novel optical component implemented via femtosecond laser direct writing possesses compact geometry and unique optical properties. The CAsPP with a diameter of 80 µm possesses a controllable long focus ranging from 50 to 600 µm and exhibits a good self-healing ability after free transmission of about 45 µm.
View Article and Find Full Text PDFJ Prosthodont
February 2020
Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN.
Chemosphere
November 2010
College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, China.
Photodegradation of gaseous α-pinene by a vacuum ultraviolet (VUV) in a spiral reactor was investigated under various gaseous reaction media and residence time, and their respective effects on types and biodegradability of the intermediates were studied. Analysis of carbon amounts showed that about 33% and 43% of total carbon were converted to soluble organic carbon in the air medium with a relative humidity (RH) of 35-40% at empty bed residence times (EBRTs) of 18 and 45 s. Based on the identified intermediates by GC/MS and IC, a photodegradation pathway was proposed by the combined roles of photolysis, OH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!