Diabetic cardiomyopathy, characterized by myocardial fibrosis, is a common complication of diabetes. Retinoic acid-related orphan receptor α (RORα) participates in various pathological and physiological cardiovascular processes. The current research aims to elucidate the roles and mechanisms of RORα in high glucose induced cardiac fibroblasts proliferation. Primary neonatal cardiac fibroblasts were isolated from Sprague-Dawley rats, and pre-administrated with RORα antagonist SR3335 (20 µM) or RORα agonist SR1078 (10 µM) followed by the stimulation with normal glucose (5.5 mM) or high glucose (33.3 mM) respectively. Lactate Dehydrogenase (LDH) release into culture medium, cellular adenosine-triphosphate (ATP), and cell number were detected. Expressions of Collagen I, Collagen III, proliferating cell nuclear antigen (PCNA), α-smooth muscle actin (α-SMA), receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3) were evaluated. The extent of oxidative stress was also assessed. Our study found that high glucose elevated LDH release, reduced cellular ATP production, increased cells numbers, elevated expression of Collagen I, Collagen III, PCNA, α-SMA, RIPK1 and RIPK3, decreased mitochondrial membrane potential, strengthened intensity of dihydroethidium (DHE) and MitoSOX fluorescence. Above effects were all further exacerbated by SR3335 but significantly reversed by SR1078. In conclusion, RORα antagonist SR3335 promoted cell injury and proliferation, enhanced collagen synthesis, facilitated oxidative stress and necroptosis in cardiac fibroblasts with high glucose stimulation, whereas RORα agonist SR1078 showed opposing effects. Our study proposed RORα as a novel target against high glucose-induced cardiac fibroblasts proliferation, which is beneficial to clarify ideal therapeutic implication for diabetic cardiomyopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821935PMC
http://dx.doi.org/10.3389/fphar.2025.1539690DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
20
high glucose
16
fibroblasts proliferation
12
retinoic acid-related
8
acid-related orphan
8
orphan receptor
8
high glucose-induced
8
glucose-induced cardiac
8
diabetic cardiomyopathy
8
rorα antagonist
8

Similar Publications

Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males.

View Article and Find Full Text PDF

Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart.

View Article and Find Full Text PDF

Cardiac fibrosis is a major driver of heart failure, a leading cause of morbidity and mortality worldwide. Advances in single-cell transcriptomics have revealed the pivotal role of SPP1+ macrophages in the pathogenesis of cardiac fibrosis, positioning them as critical mediators and promising therapeutic targets. SPP1+ macrophages, characterized by elevated expression of () and often co-expressing (), localize to fibrotic niches in the heart and other organs.

View Article and Find Full Text PDF

Peutz-Jeghers syndrome (PJS) is associated with early-onset gastrointestinal polyposis caused by hereditary inactivating pathogenic variants in the tumor suppressor gene STK11 (LKB1). Due to lack of prophylactic therapies, management of PJS polyps requires frequent surveillance. Interestingly, studies in mouse models have revealed that stromal cells drive the polyp formation, but detailed understanding of the cell types and interactions involved has been lacking.

View Article and Find Full Text PDF

Cardiac remodeling in response to disease or tissue damage severely impairs heart function. Therefore, the description of the molecular mechanisms responsible is essential for the development of effective therapies. Trbp (Tarbp2) is a multifunctional RNA-binding protein that is essential during heart development, but its role in the adult heart and cardiac remodeling remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!