A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep transfer learning based hierarchical CAD system designs for SFM images. | LitMetric

Deep transfer learning based hierarchical CAD system designs for SFM images.

J Med Eng Technol

CSIR-Central Scientific Instruments Organization, Chandigarh, India.

Published: February 2025

Present work involves rigorous experimentation for classification of mammographic masses by employing four deep transfer learning models using hierarchical framework. Experimental work is carried on 518 SFM images of DDSM dataset with 208, 150 and 160 images of probably benign, suspicious- malignant and highly malignant classes, respectively. ResNet50 model is used for generating segmented mass images. For hierarchical classification framework, at node 1, the segmented mass image is classified as belonging to probably benign (BIRAD-3) class or suspicious abnormality (BIRAD-4 and BIRAD-5) class. At node 2, the segmented mass image belonging to suspicious abnormality class is further classified as suspicious malignant (BIRAD-4) class or highly malignant (BIRAD-5) class. Deep transfer learning based hierarchical CAD systems experimented in the present work include VGG16/VGG19/ GoogleNet/ResNet50 models. It was noted that deep transfer learning model VGG19 at node 1 and VGG16 at node 2, yielded highest classification accuracy of 93 % and 90 %, respectively, therefore, a deep transfer learning based hybrid hierarchical CAD system was developed by employing VGG19 at node 1 and VGG16 at node 2. This model yields overall classification accuracy of 88 %. Further, hybrid hierarchical CAD system was designed using VGG19/ANFC-LH classifier at node 1, and VGG16/ANFC-LH classifier at node 2 yielding the highest classification accuracy of 92%. The promising result yielded by hybrid hierarchical CAD system design indicates its usefulness for step-wise classification of mammographic masses.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03091902.2025.2463580DOI Listing

Publication Analysis

Top Keywords

deep transfer
20
transfer learning
20
hierarchical cad
20
cad system
16
learning based
12
segmented mass
12
classification accuracy
12
hybrid hierarchical
12
based hierarchical
8
sfm images
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!