A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protein Silencing with Self-Peptides. | LitMetric

Designing functional molecules which can recognize and modify the activity of a specific protein is a frequently encountered challenge in biology and pharmaceutical chemistry, and requires major effort for each specific protein target. Here we demonstrate that "self-peptides", parts of folded proteins which by their nature are recognizable by the rest of the protein, provide a general route to developing such molecules. Such a synthetic peptide with a chemically prestabilized conformation can incorporate into the target protein during its folding, and can potentially displace its native counterpart to cause functional deficits. This strategy is especially promising for proteins with β-barrel topology, as the seam of the barrel provides a vulnerable target. We demonstrate this strategy by using green fluorescent protein (EGFP) as a model, as its fluorescence is a direct reporter of its conformation and function. Refolding EGFP in the presence of 35 μM of a disulfide-stabilized 20-residue self-peptide (SP1, which resembles a seam, strands 3 and 11, of GFP) quenches the fluorescence by 97%. A peptide with the same composition but a different sequence is only 40% as effective, demonstrating that silencing is relatively specific. Fluorescence correlation spectroscopy and time-resolved fluorescence lifetime measurements show that SP1 causes complete long-term fluorescence silencing of the EGFP molecules it incorporates into. This result can in principle have a biological application if the self-peptide incorporates into a protein during its synthesis, before the nascent protein folds. We show that SP1 can indeed silence nascent sfGFP (closely related to EGFP) during its ribosomal synthesis in an translation system. Therefore, self-peptides present a potentially general strategy for developing protein-specific silencers for physiological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c08265DOI Listing

Publication Analysis

Top Keywords

protein
8
specific protein
8
target demonstrate
8
fluorescence
5
protein silencing
4
silencing self-peptides
4
self-peptides designing
4
designing functional
4
functional molecules
4
molecules recognize
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!