Mitochondrial respiratory complexes are organized into supercomplexes (SC) to regulate electron flow and mitigate oxidative stress. Alterations in SC organization in the brain may affect energy expenditure, oxidative stress, and neuronal survival. In this report, we investigated the amount, activity and organization of mitochondrial complex I (CI) in the hippocampus of 12-month-old McGill-R-Thy1-APP transgenic (Tg) rats, an animal model of Alzheimer's-like cerebral amyloidosis. By means of BN-PAGE, we found that the organization of SC did not differ between genotypes, but a lower abundance of SC was detected in Tg compared to wild-type (WT) rats. Using a more sensitive technique (2-D electrophoresis followed by Western blot), higher levels of free CI and a decrease in the relative abundance of assembled CI in SC (I-III and I-III-IV) were observed in Tg rats. In-gel activity assays showed that the total activity of CI (CI + SC-CI) is lower in Tg compared to WT, while Tg samples show a significant decrease in SC-CI-associated activity. This alteration in CI assembly was associated with nitro-oxidative stress and changes in mitochondrial fusion-fission parameters. To assess CI composition, we applied LC-MS/MS to the isolated CI from BN-PAGE and found that 11 of 45 subunits described in mammals were found to be less abundant in Tg. We examined the levels of the nuclear-derived NDUFA9 subunit, which is critical for CI assembly, and found higher levels in the cytoplasmic fraction and lower levels in the mitochondrial fraction in Tg, suggesting that brain amyloidosis affects the import of CI subunits from the cytosol to the mitochondria, destabilizing the SC. This is the first report to characterize the types, abundance and activity of SC in the hippocampus of an animal model of cerebral amyloidosis, providing additional experimental evidence for the molecular mechanisms underlying the brain bioenergetic deficit characteristic of Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.70017DOI Listing

Publication Analysis

Top Keywords

cerebral amyloidosis
12
mitochondrial complex
8
alzheimer's-like cerebral
8
oxidative stress
8
animal model
8
higher levels
8
mitochondrial
5
activity
5
supramolecular architecture
4
architecture mitochondrial
4

Similar Publications

Amyloidosis such as Alzheimer's or Parkinson's disease is characterized by deposition of amyloid fibrils in the brain or various internal organs. The onset of amyloidosis is related to the strength of cytotoxicity caused by toxic amyloid species. In addition, amyloid fibrils show a polymorphism, , some types of fibrils are more cytotoxic than others.

View Article and Find Full Text PDF

Multiple lines of evidence indicate that immune signaling can impact the pathological progression in Alzheimer's disease (AD), including amyloid deposition, tau aggregation, synaptic pathology and neurodegenerative trajectory. In earlier studies, we reported that intracerebral expression of the anti-inflammatory cytokines, Interleukin-10 (Il10) and Interleukin-4 (Il4), increased amyloid β (Aβ) burden in TgCRND8 mice, a preclinical model of AD-type amyloidosis. As both Interleukin-10 receptor (IL10R) and Interleukin-4 receptor (IL4R) are upregulated in an age-progressive manner in rodent models of AD and in specific regions of human AD brains, we hypothesized that a decoy receptor strategy specifically targeting Il10 and Il4 signaling could have a disease-modifying effect.

View Article and Find Full Text PDF

γ-Secretase modulators (GSMs) represent an emerging oral therapy for preventing and targeting Aβ-amyloidosis in Alzheimer disease. Aβ is a family of peptides of varying lengths where both the total and relative amounts of the individual Aβ peptides affect the process of amyloidosis. In contrast to inhibitors of Aβ synthesis, GSMs do not affect the total amount of Aβ peptides generated but decrease longer more amyloidogenic Aβ species while increasing the production of shorter less amyloidogenic Aβ peptides.

View Article and Find Full Text PDF

Background: Iatrogenic cerebral amyloid angiopathy (iCAA) is a recently identified clinico-neuroradiological syndrome associated with medical procedures, particularly neurosurgical treatments involving cadaveric dura mater (e.g., Lyodura).

View Article and Find Full Text PDF

Circulating proteomic biomarkers for cerebral amyloid angiopathy screening and risk stratification.

Alzheimers Dement

March 2025

Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China.

Introduction: We systematically characterized plasma protein profiles in cerebral amyloid angiopathy (CAA) using proteomics and identified a hub protein panel for disease diagnosis and risk stratification.

Methods: A total of 146 patients with probable CAA and 128 community-dwelling controls were prospectively enrolled. Plasma samples underwent proteomic analysis, and the hub proteins were validated in two validation cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!