Background: Abnormal expression of N-acetyltransferase 10 (NAT10) has been shown to promote the progression of various tumors, including non-small cell lung cancer (NSCLC). This study was designed to investigate the role of NAT10 in NSCLC and the underlying mechanism.

Methods: Reverse transcription-quantitative polymerase chain reaction and Western blot were used to analyze the levels of NAT10 in NSCLC cell lines. The cell viability, proliferation, and apoptosis of A549 and PC9 cell lines were detected by cell counting kit-8, colony formation, and flow cytometry. N4-acetylcytidine (acC)-RNA immunoprecipitation assay was performed to detect the level of acC of α-enolase (ENO1) mRNA in A549 and PC9 cell lines. The relationship between NAT10 and ENO1 was performed by dual-luciferase reporter assay.

Results: NAT10 was increased in NSCLC cell lines. The acC level of ENO1 mRNA in A549 and PC9 cell lines was downregulated after NAT10 inhibition. Knockdown of NAT10 inhibited cell viability and glycolysis and promoted cell apoptosis in A549 and PC9 cell lines, and the results were reversed after ENO1 overexpressing.

Conclusions: NAT10 regulated glycolysis and apoptosis in NSCLC via acC acetylating ENO1, which might provide new ideas for the clinical treatment of NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827380PMC
http://dx.doi.org/10.1186/s12890-024-03463-2DOI Listing

Publication Analysis

Top Keywords

cell lines
24
a549 pc9
16
pc9 cell
16
eno1 mrna
12
cell
12
glycolysis apoptosis
8
non-small cell
8
cell lung
8
lung cancer
8
nat10
8

Similar Publications

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.

View Article and Find Full Text PDF

Synthesis of high-molecular-weight polypeptides and their block copolymer macromolecular architectures from β-sheet-promoting L-amino acids is still an unresolved problem. Here, an elegant steric hindrance-assisted ring-opening polymerization (SHAROP) strategy is introduced to access β-sheet poly(L-tyrosine) having more than 250 units. The scope of the synthetic methodology is expanded to access unexplored poly(L-tyrosine)-based higher-order β-sheet block copolymer nanoassemblies.

View Article and Find Full Text PDF

T-cell Engagers in Prostate Cancer.

Eur Urol

March 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. Electronic address:

Owing to the "cold" tumor immune microenvironment of prostate cancer, immune-targeting agents have shown limited efficacy in patients with advanced prostate cancer, highlighting the need for new therapies with novel mechanisms of action. In this context, T-cell engagers (TCEs), which induce T-cell-mediated killing of cancer cells by binding the CD3 receptor on T cells and a specific tumor antigen expressed on malignant cells, represent a promising therapeutic option. Multiple studies have explored the use of TCEs in previously treated patients with metastatic castration-resistant prostate cancer, and several ongoing trials are currently assessing novel TCEs either as single agents or in combinatorial regimens with molecules with a distinct mechanism of action (eg, androgen receptor pathway inhibitors and other immune-targeting agents).

View Article and Find Full Text PDF

[Merkel cell carcinoma: An update].

Bull Cancer

March 2025

Dermatologie, CHU de Tours, Tours, France; Réseau CARADERM, France.

Merkel cell carcinoma (MCC) is a rare skin cancer that mainly affects the elderly, and whose incidence is increasing. Although the exact origin of this cancer remains uncertain, research in recent years has revealed that MCC develops through two oncogenesis pathways: virally induced by the Merkel polyomavirus (80% of cases) and induced by mutations linked to ultraviolet rays (20% of cases). MCC is an aggressive cancer, with a high mortality rate and limited therapeutic options in advanced stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!