Toll-like receptors (TLR) are phylogenetically conserved mediators of innate immunity that are essential for establishing adaptive immune responses against invading pathogens. TLR7 is an endosomal receptor expressed predominantly in myeloid and B cells. Activation of TLR7 induces Type I interferon and proinflammatory responses; therefore, targeting TLR7 is a promising strategy for antitumor therapy. Although the use of bacterial components to trigger innate immune responses in cancer patients started a century ago, the effectiveness of systemic TLR agonists has been rather underwhelming in clinical trials, partly due to nonspecific immune activation leading to safety and tolerability issues. Antibody-drug conjugates (ADCs) constitute a proven therapeutic modality amenable to systemic administration with limited toxicity concerns via a targeted delivery platform. We generated TLR7 agonist-antibody conjugates that recognize tumor antigens expressed on the surface of tumor cells. Generated ADCs demonstrated robust activity in in vitro tumor antigen-presenting cell (APC) coculture systems as indicated by dose-dependent upregulation of PD-L1 and CD86 on macrophages. TLR7 agonist-ADC provided superior tumor growth control compared to intravenously (IV) administrated free TLR7 agonist. Treatment with TLR7 agonist-ADC led to prolonged activation of myeloid cells in the tumor microenvironment (TME) with minimum immune activation in the periphery. Systemic and tissue exposure studies demonstrated tumor-specific free drug release by targeted ADC treatment. In summary, the TLR7 agonist-ADC can potentially activate immune cells in the TME to generate tumor antigen-specific T-cell responses, making it an attractive approach for precision cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.4c00534 | DOI Listing |
J Immunol
January 2025
Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.
Macrophages are important mediators of immune responses with critical roles in the recognition and clearance of pathogens, as well as in the resolution of inflammation and wound healing. The neuronal guidance cue SLIT2 has been widely studied for its effects on immune cell functions, most notably directional cell migration. Recently, SLIT2 has been shown to directly enhance bacterial killing by macrophages, but the effects of SLIT2 on inflammatory activation of macrophages are less known.
View Article and Find Full Text PDFJ Immunol
January 2025
Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function and polarization, which is crucial to the resolution of inflammation. The contribution of lipid synthesis to proinflammatory macrophage responses is well understood.
View Article and Find Full Text PDFJ Immunol
January 2025
Institute of Virology and Immunology, Mittelhäusern, Switzerland.
While several African swine fever virus (ASFV)-encoded proteins potently interfere with the cGAS-STING (cyclic GMP-AMP synthetase-stimulator of interferon genes) pathway at different levels to suppress interferon (IFN) type I production in infected macrophages, systemic IFN-α is induced during the early stages of AFSV infection in pigs. The present study elucidates a mechanism by which such responses can be triggered, at least in vitro. We demonstrate that infection of monocyte-derived macrophages (MDMs) by ASFV genotype 2 strains is highly efficient but immunologically silent with respect to IFN type I, IFN-stimulated gene induction, and tumor necrosis factor production.
View Article and Find Full Text PDFJ Immunol
February 2025
Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
The erythroblastic island (EBI) functions as a niche in which erythroblastic island macrophages (EBIMφs) are positioned within rings of erythroblasts, providing support and signals that orchestrate efficient erythropoiesis. We postulated burn injury impacts the EBI niche, given the nearly universal presence of anemia and inflammation in burn patients, and a divergent myeloid transcriptional signature that we observed in murine bone marrow following burn injury, in which granulocyte colony-stimulating factor (G-CSF) secretion broadly attenuated the expression of EBIMφ marker genes. Notably, we identified the heme-induced transcription factor Spi-C as a robust marker of EBIMφs in Spicigfp/igfp mice.
View Article and Find Full Text PDFJ Immunol
February 2025
Department of Immunology, Tufts University School of Medicine, Boston, MA, United States.
The life cycle of effector T cells is determined by signals downstream of the T cell receptor (TCR) that induce activation and proinflammatory activity, or death as part of the process to resolve inflammation. We recently reported that T cell myeloid differentiation primary response 88 (MyD88) tunes down TCR activation and limits T cell survival in the cardiac and tumor inflammatory environments, in contrast to its proinflammatory role in myeloid cells upon toll-like receptor (TLR) recognition of pathogen- and damage-associated molecular patterns. However, the molecular mechanism remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!