Precise models predicting fuel cell performance under different operating conditions require accurate parameter identification in a proton exchange membrane fuel cell (PEMFC). Most traditional parameter estimation methodologies depend on optimization algorithms which are limited in their efficiency, convergence speed, and robustness. Typically, existing algorithms fail to achieve a balance between precision and computational efficiency, leading to suboptimal modeling of the complex, nonlinear behavior of PEMFCs. In this paper, we present the two-stage differential evolution (TDE) algorithm, which fills these gaps by using a new mutation strategy that improves solution diversity and speeds up convergence. Seven critical unknown parameters ([Formula: see text] and λ) in PEMFC models are identified by using the proposed TDE algorithm. The optimization process is to minimize the sum of squared errors (SSE) between the experimentally measured and predicted cell voltages. TDE resulted in a 41% reduction in SSE (minimum SSE of 0.0255 compared to 0.0432), a 92% improvement in maximum SSE, and over 99.97% reduction in standard deviation compared to the HARD-DE algorithm. Furthermore, TDE was shown to be 98% more efficient than HARD-DE, with a runtime of 0.23 s, compared to HARD-DE's runtime of 11.95 s. Extensive testing of these advancements was performed on six commercially available PEMFC stacks over twelve case studies, and I/V and P/V characteristics were confirmed to be consistent with experimental data. The results show that TDE has better accuracy, robustness and computational efficiency than the other methods, and therefore TDE can be used as a real time PEMFC parameter estimation tool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825906PMC
http://dx.doi.org/10.1038/s41598-025-89304-6DOI Listing

Publication Analysis

Top Keywords

parameter estimation
12
fuel cell
12
differential evolution
8
proton exchange
8
exchange membrane
8
membrane fuel
8
computational efficiency
8
tde algorithm
8
tde
6
stage differential
4

Similar Publications

Objective: The objective of this study was to evaluate associations of early-pregnancy plasma per- and polyfluoroalkyl substances (PFAS) with maternal post-pregnancy weight trajectory parameters.

Methods: We studied 1106 Project Viva participants with measures of early-pregnancy plasma concentrations of eight PFAS. We measured weight at in-person visits at 6 months and 3, 7, and 12 years after pregnancy and collected self-reported weight via annual questionnaires up to 17 years after pregnancy.

View Article and Find Full Text PDF

Microbiological sampling and testing are widely utilized in food safety risk management. We developed risk assessments to quantify the impact of various sampling plans on the risk of invasive listeriosis to consumers. We used the FDA-iRISK® tool and adapted available process, consumption, and dose response modules of published L.

View Article and Find Full Text PDF

Phosphatidylcholine synthesis and remodeling in brain endothelial cells.

J Lipid Res

March 2025

LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany. Electronic address:

Mammalian cells synthesize hundreds of different variants of their prominent membrane lipid phosphatidylcholine (PC), all differing in the side chain composition. This batch is constantly remodeled by the Lands cycle, a metabolic pathway replacing one chain at the time. Using the alkyne lipid lyso-phosphatidylpropargylcholine (LpPC), a precursor and intermediate in PC synthesis and remodeling, we study both processes in brain endothelial bEND3 cells.

View Article and Find Full Text PDF

Distribution and potential sources of iodine in particulate matter at an industrial city in Northwest China.

Environ Res

March 2025

School of Chemistry and Chemical Engineering, and Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang, Shihezi University, Shihezi, Xinjiang 832003, P. R. China. Electronic address:

Iodine plays a key role in atmospheric chemistry that can significantly affect the atmospheric oxidation capacity. Although the oceans are the main reservoir of iodine on Earth, iodine is also widely present in the terrestrial environment. Therefore, a comprehensive understanding of the present sources of iodine in inland areas is warranted for the evaluation of its environmental effect.

View Article and Find Full Text PDF

Medical image-based computational fluid dynamics (CFD) is a valuable tool for studying cardiovascular hemodynamics and its role in vascular pathologies. However, patient-specific flow rate measurements are rare. As a remedy, individual flow rates are typically estimated using anatomical features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!