A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Observer-based fractional-order dynamic terminal sliding mode control of active shock absorbing prostheses for lower limb amputees. | LitMetric

Recent biomedical engineering developments have empowered prosthetic devices to evolve from purely mechanical devices to more sophisticated controlled devices, allowing amputees to perform advanced locomotion modes such as passing stairs and walking on sloped surfaces. However, the strongly coupled nonlinear system dynamics make it difficult for the lower-limb prosthesis (LLP) to adapt to complex tasks and isolate the vibrations and acceleration from the residual limb soft tissue. In this regard, realizing the potential of active LLPs to increase user mobility and efficiency requires reliable, stable, and intuitive control strategies to provide a comfortable gait quality. In this study, a fractional-order dynamic terminal sliding mode controller (FDTSMC) is proposed to effectively isolate the residual limb soft tissue from the vibrations and acceleration arising from the pylon and foot. The proposed sliding surfaces guarantee the fast finite-time system states' convergence, and the chattering is remarkably alleviated. Furthermore, since from the practical viewpoint, the actuators are non-ideal and are affected by dead-zone and hysteresis that degrade the LLP's performance, an observer is augmented with the control system to estimate the lumped uncertainties and compensate for the effects of model nonlinear dynamics and disturbances. The closed-loop system stability is ensured in terms of Lyapunov concept. Comparative performance investigations in ideal and non-ideal situations are carried out, and the proposed control scheme's favorable gait shock absorption performance over observer-based conventional SMC and dynamic SMC approaches is revealed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2025.01.007DOI Listing

Publication Analysis

Top Keywords

fractional-order dynamic
8
dynamic terminal
8
terminal sliding
8
sliding mode
8
vibrations acceleration
8
residual limb
8
limb soft
8
soft tissue
8
observer-based fractional-order
4
control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!