Background: Postoperative pulmonary complications (PPCs) are major adverse events in neurosurgical patients. This study aimed to develop and validate machine learning models predicting PPCs after neurosurgery.

Methods: PPCs were defined according to the European Perioperative Clinical Outcome standards as occurring within 7 postoperative days. Data of cases meeting inclusion/exclusion criteria were extracted from the anesthesia information management system to create three datasets: The development (data of Huashan Hospital, Fudan University from 2018 to 2020), temporal validation (data of Huashan Hospital, Fudan University in 2021) and external validation (data of other three hospitals in 2023) datasets. Machine learning models of six algorithms were trained using either 35 retrievable and plausible features or the 11 features selected by Lasso regression. Temporal validation was conducted for all models and the 11-feature models were also externally validated. Independent risk factors were identified and feature importance in top models was analyzed.

Results: PPCs occurred in 712 of 7533 (9.5%), 258 of 2824 (9.1%), and 207 of 2300 (9.0%) patients in the development, temporal validation and external validation datasets, respectively. During cross-validation training, all models except Bayes demonstrated good discrimination with an area under the receiver operating characteristic curve (AUC) of 0.84. In temporal validation of full-feature models, deep neural network (DNN) performed the best with an AUC of 0.835 (95% confidence interval [CI]: 0.805-0.858) and a Brier score of 0.069, followed by logistic regression (LR), random forest and XGBoost. The 11-feature models performed comparable to full-feature models with very close but statistically lower AUCs, with the top models of DNN and LR in temporal and external validations. An 11-feature nomogram was drawn based on the LR algorithm and it outperformed the minimally modified Assess respiratory RIsk in Surgical patients in CATalonia (ARISCAT) and Laparoscopic Surgery Video Educational Guidelines (LAS VEGAS) scores with a higher AUC (LR: 0.824, ARISCAT: 0.672, LAS: 0.663). Independent risk factors based on multivariate LR mostly overlapped with Lasso-selected features, but lacked consistency with the important features using the Shapley additive explanation (SHAP) method of the LR model.

Conclusions: The developed models, especially the DNN model and the nomogram, had good discrimination and calibration, and could be used for predicting PPCs in neurosurgical patients. The establishment of machine learning models and the ascertainment of risk factors might assist clinical decision support for improving surgical outcomes.

Trial Registration: ChiCTR 2100047474; https://www.chictr.org.cn/showproj.html?proj = 128279.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CM9.0000000000003433DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning models
16
temporal validation
16
models
13
risk factors
12
models predicting
8
postoperative pulmonary
8
pulmonary complications
8
neurosurgical patients
8
predicting ppcs
8

Similar Publications

Background: Processing data from electronic health records (EHRs) to build research-grade databases is a lengthy and expensive process. Modern arthroplasty practice commonly uses multiple sites of care, including clinics and ambulatory care centers. However, most private data systems prevent obtaining usable insights for clinical practice.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) leads to rapid physiological and functional decline before causing untimely death. Current best-practice approaches to interdisciplinary care are unable to provide adequate monitoring of patients' health. Passive in-home sensor systems enable 24×7 health monitoring.

View Article and Find Full Text PDF

AI-Driven Discovery of Highly Specific and Efficacious hCES2A Inhibitors for Ameliorating Irinotecan-Triggered Gut Toxicity.

J Med Chem

March 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

The anticancer agent irinotecan often induces severe delayed-onset diarrhea, inhibiting human carboxylesterase 2A (hCES2A) can significantly alleviate irinotecan-triggered gut toxicity (ITGT). This work presents an efficient workflow for design and developing novel efficacious hCES2A inhibitors. A well-training machine learning model identified as a lead compound, while compound was developed as a novel time-dependent hCES2A inhibitor (IC = 0.

View Article and Find Full Text PDF

Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures.

View Article and Find Full Text PDF

Background: Plant-based milk alternatives (PBMA) are increasingly popular due to rising lactose intolerance and environmental concerns over traditional dairy products. However, limited efforts have been made to develop rapid authentication methods to verify their biological origin.

Objective: In this study, we developed a rapid, on-site analytical method for the authentication and identification of PBMA made by six different plant species utilizing a portable Raman spectrometer coupled with machine learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!