The formation of membraneless organelles is vital for the intracellular organization of macromolecules and in regulating many cellular processes. The membraneless organelles are formed by liquid-liquid phase separation (LLPS) mainly constituted of proteins and polynucleotides. The primary factor driving the liquid demixing into two phases is the multivalency of the proteins involved, a general characteristic of intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs). This chapter discusses the role of IDP/IDRs in biomolecular condensate formation and the physical characteristics of these states. Further, the LLPS formation of individual proteins induced by molecular crowding and its relevance to physiological conditions are presented. The studies on the effects of small molecular osmolytes and a hydrotrope, ATP on the phase separation temperature, protein concentration, and reentrant behavior are discussed. The advancements and limitations of the computational methods to predict the phase separation behavior of IDPs, and to analyze the interactions and dynamics of the proteins in condensates are presented. The roles of phase separation in cancer, neurological disorders, and cardiovascular diseases are highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pmbts.2024.11.005 | DOI Listing |
Langmuir
March 2025
China Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
In the context of scarce metal resources, the one-step separation and recovery of high-value copper metal ions from secondary resources is of significant importance and presents substantial challenges. This study identified a Zn-based triazole MOF (Zn(tr)(OAc)) with accessible and noncoordinated terminal hydroxyl groups within its framework. The Zn(tr)(OAc) surpasses most currently reported Cu-specific MOF adsorbents regarding adsorption capacity and Cu selectivity.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan.
In this study, the role of phosphorylation in the liquid-liquid phase separation (LLPS) of tau, the underlying driving forces, and the potential implications of this separation on protein conformation and subsequent protein aggregation were investigated. We compared in vivo-produced phosphorylated tau (p-tau) and nonphosphorylated tau under different coacervation conditions without adding crowding agents. Our findings revealed that spontaneous phase separation occurs exclusively in p-tau, triggered by a temperature shift from 4 °C to room temperature, and is driven by electrostatic and hydrophobic interactions.
View Article and Find Full Text PDFJ Chromatogr A
March 2025
Synthetic Molecule Design and Development, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285, United States. Electronic address:
J Am Chem Soc
March 2025
Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States.
The efficient removal of CO from exhaust streams and even directly from air is necessary to forestall climate change, lending urgency to the search for new materials that can rapidly capture CO at high capacity. The recent discovery that diamine-appended metal-organic frameworks can exhibit cooperative CO uptake via the formation of ammonium carbamate chains begs the question of whether simple organic polyamine molecules could be designed to achieve a similar switch-like behavior with even higher separation capacities. Here, we present a solid molecular triamine, 1,3,5-tris(aminomethyl)benzene (TriH), that rapidly captures large quantities of CO upon exposure to humid air to form the porous, crystalline, ammonium carbamate network solid TriH(CO)·HO (TriHCO).
View Article and Find Full Text PDFSci Adv
March 2025
Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.
Polymer blend films exhibit unique properties and have applications in various fields. However, understanding their nanoscale structures and polymer component distributions remains a challenge. To address this limitation, we have developed a super-resolution fluorescence microscopy-based technique called oxygen-excluded nanoimaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!