Although microplastics have been detected in human blood, placenta and other tissues. In this study, for the first time, we characterized the presence and variation of microplastic deposition patterns in three human skeletal tissues, namely the bone, cartilage, and intervertebral discs. Forty microplastic fragments were observed in 24 samples from the bone, cartilage, and intervertebral disc, ranging from 25.44 to 407.39 μm in diameter. The deposition abundance of microplastics in the human intervertebral disc (61.1 ± 44.2 particles/g) was higher than those in the bone (22.9 ± 15.7 particles/g) and cartilage tissue (26.4 ± 17.6 particles/g). The average sizes of microplastics in intervertebral discs (159.5 ± 103.8 μm) and bone (138.86 ± 105.67 μm) were larger than that in the cartilage tissue (87.5 ± 30.7 μm). The most frequently identified polymers were polypropylene (35 %), ethylene vinyl acetate copolymer (30 %), and polystyrene (20 %). The in vivo experiment suggested that microplastics invaded the bone, cartilage, and intervertebral discs through blood circulation after 4 weeks of exposure. Serum levels of tumor necrosis factor-α (TNF-α), Type Ⅰ procollagen amino-terminal peptide (PINP), and tartrate-resistant acid phosphatase-5b (TRACP-5b) were elevated compared with those in the control group (p < 0.05). Our study suggests that microplastics invade the bone, cartilage, and intervertebral discs through the blood supply, causing distinct patterns of microplastic accumulation in these regions. Microplastic invasion can affect skeletal health by influencing the expression of inflammatory and bone morphogenetic cytokines. These findings provide insights into investigating the impact of microplastics on human skeletal health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2025.109316 | DOI Listing |
Regen Biomater
January 2025
Department of Orthopedics, National Children's Medical Center & Children's Hospital of Fudan University, Shanghai 201102, P. R. China.
The growth plate is crucial for skeletal growth in children, but research on repairing growth plate damage and restoring growth is limited. Here, a high-toughness adaptive dual-crosslinked hydrogel is designed to mimic the growth plate's structure, supporting regeneration and bone growth. Composed of aldehyde-modified bacterial cellulose (DBNC), methacrylated gelatin (GelMA) and sodium alginate (Alg), the hydrogel is engineered through ionic bonding and Schiff base reactions, creating a macroporous structure.
View Article and Find Full Text PDFLaryngoscope
March 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
Objectives: Tympanic membrane perforation (TMP) is a common reason for visits to otolaryngology clinics. For decades, various surgical methods and grafts have been employed to treat TMP. This study aimed to compare the efficacy of tragal cartilage grafts (TCG) and dermal allografts (DAG) in myringoplasty for treating TMP.
View Article and Find Full Text PDFBone Res
March 2025
Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
Aging is a pivotal risk factor for intervertebral disc degeneration (IVDD) and chronic low back pain (LBP). The restoration of aging nucleus pulposus cells (NPCs) to a youthful epigenetic state is crucial for IVDD treatment, but remains a formidable challenge. Here, we proposed a strategy to partially reprogram and reinstate youthful epigenetics of senescent NPCs by delivering a plasmid carrier that expressed pluripotency-associated genes (Oct4, Klf4 and Sox2) in Cavin2-modified exosomes (OKS@M-Exo) for treatment of IVDD and alleviating LBP.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Objectives: With the aging population, the incidence of intervertebral disc degeneration (IDD) is increasing every year. The pathogenesis of IDD is complex, and there are currently no effective treatment options. This study aims to investigate the specific function and underlying mechanism of zinc finger protein 667 (ZNF667) in the inflammatory damage of nucleus pulposus cells in IDD.
View Article and Find Full Text PDFExp Cell Res
March 2025
School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China; Xuzhou Stomatological Hospital, Xuzhou, 221007, China. Electronic address:
Hydrogel, as the most suitable bio-scaffold material for simulating extracellular matrix, can be used to study the influence of material mechanical properties on cell behavior under 3D conditions. Mechanical stimulation plays an important role in cartilage differentiation, especially for the mechanosensitive cell-bone marrow mesenchymal stem cells (BMSCs). Currently, TRPV4 and Cav1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!