The oxidative potential (OP) of particulate matter (PM) has emerged as a promising indicator of the adverse effects of PM on human health. In particular, OP is an indicator for oxidative stress in biological media through formation of reactive oxygen species. To provide a mapping of the spatial and temporal OP variability over France, we have developed a strategy to simulate the volume-normalized oxidative potential (OP) in the state-of-the-art CHIMERE air quality model over the metropolitan French territory for the years 2013 and 2014. To do so, we combined a measurement-derived and source specific intrinsic OP (OP) receptor modelling approach with Particle Source Apportionment Technology (PSAT) in CHIMERE. First, the model's ability to reproduce PM concentrations and speciation was verified using in situ observations in mainland France. Furthermore, a mostly satisfying correspondence between receptor model and PSAT outputs was obtained considering their source specific chemical profiles. Simulated versus observed OP values showed median correlations ranging from 0.35 to 0.60 and mean fractional biases from -30 % to zero, depending on the OP assay considered (ascorbic acid AA, or dithiothreitol DTT) and the PM sources taken into account (i.e. two methods with different PM sources have been used, the reduced and the extended set methods). The modelled two-year average OP fields show greater spatial hot spots over large urban areas (especially along roadsides) compared to those for PM distributions, due to elevated intrinsic OP values for the primary anthropogenic sources such as traffic and biomass burning. These effects are stronger for the AA compared to the DTT assays, and for a method with a reduced set compared to an extended set of sources. Overall, through the OP apportionment, these results advocate for reinforcing action plans to reduce emissions from road traffic as well as biomass burning emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2025.178813 | DOI Listing |
ACS Sens
March 2025
Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
Herein, a novel and simple electrospray (ES) printing technique was developed for the fabrication of ultrathin graphene layers with precisely controlled nanometer-scale thickness, where graphene oxide (GO) was electrosprayed on wafers and subsequently chemically reduced into reduced GO (rGO). Utilizing that technique, we prepared ultrathin rGO in-plane graphene field-effect transistor (GFET)-based biosensors coupled with a portable prototype measuring system for point-of-care detection of pathogens. We illustrate the use of such prepared GFETs to detect COVID-19, using the SARS-CoV-2 nucleocapsid protein antigen (N-protein) and genomic viral RNA as detection targets.
View Article and Find Full Text PDFJ Agric Food Chem
March 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
To discover novel structural nematicides, 79 amide compounds containing 1,2,4/1,3,4-oxadiazole moiety were designed, synthesized, and evaluated for nematicidal efficacy against second-stage juveniles of (). Notably, some compounds exhibited superior nematicidal efficacy, for example, the LC values of compounds , , , , , , , and were 7.4, 31.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
School of Chemistry and Environment, Changchun University of Science and Technology, Changchun 130022, China.
Doping guest materials into host materials with a confined space to suppress nonradiative decay is an effective strategy for achieving room-temperature phosphorescence (RTP). However, constructing host-guest doped materials with ultralong RTP (URTP) is still challenging. Herein, by embedding three coumarin derivatives into boric acid via one-step heat treatment, the URTP material with an afterglow lasting up to 60 s, a phosphorescence lifetime of 1.
View Article and Find Full Text PDFLangmuir
March 2025
School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China.
The transportation and transformation of biogenic isoprene are vital for the organic carbon cycle in the troposphere. As a typical mineral with high oxidation potential, Fe-substituted cryptomelane oxidizes the surface monolayer of isoprene into formic and acetic acids, and simultaneously, the Mn ions in the structure are reduced to Mn and Mn. The flow of HO in isoprene decreases the adsorption and oxidation of isoprene significantly, even at low relative humidity (10%).
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Electrochemical methodologies offer a transformative approach to sustainable chemical synthesis by enabling precise, energy-efficient transformations. Here, we report the selective electrochemical N-formylation of methylamine using methanol as both reagent and solvent, facilitated by a simple glassy carbon electrode. Under optimized conditions, we achieve a faradaic efficiency (FE) of 34% for methylformamide synthesis in a neutral NaClO electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!