POU4F2 overexpression promotes the genesis of retinal ganglion cell-like projection neurons from late progenitors.

Development

Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil.

Published: March 2025

Retinal ganglion cells (RGCs) are the projection neurons of the retina, and their death promotes an irreversible blindness. Several factors were described to control their genesis during retinal development. These include Atoh7, a major orchestrator of the RGC program, and downstream targets of this transcription factor, including Pou4f factors, that in turn regulate key aspects of terminal differentiation. The absence of POU4F family genes results in defects in RGC differentiation, aberrant axonal elaboration and, ultimately, RGC death. This confirms the requirement of POU4F factors for RGC development and survival, with a crucial role in regulating RGC axon outgrowth and pathfinding. Here, we have investigated in vivo whether ectopic Pou4f2 expression in late retinal progenitor cells (late RPCs) is sufficient to induce the generation of cells with RGC properties, including long-range axon projections. We show that Pou4f2 overexpression generates RGC-like cells that share morphological and transcriptional features with RGCs that are normally generated during early development and extend axonal projections up to the brain. In conclusion, these results show that POU4F2 alone is sufficient to promote the crucial properties of projection neurons that arise from retinal progenitors outside their developmental window.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.204297DOI Listing

Publication Analysis

Top Keywords

projection neurons
12
pou4f2 overexpression
8
genesis retinal
8
retinal ganglion
8
pou4f factors
8
rgc
6
retinal
5
pou4f2
4
overexpression promotes
4
promotes genesis
4

Similar Publications

Multiple sensory afferents, including mechanosensitive and nociceptive nerves, are projected to the periodontium. Peptidergic afferents expressing transient receptor potential vanilloid 1 (TRPV1), a receptor for capsaicin, mediate pain caused by orthodontic forces. However, their role in orthodontic force-induced alveolar bone remodeling is poorly understood as is the contribution of mechanosensitive ion channels such as Piezo2 in nociceptive nerves.

View Article and Find Full Text PDF

A glutamatergic innervation from medial area of secondary visual cortex to lateral posterior thalamic nucleus facilitates nociceptive and neuropathic pain.

Commun Biol

March 2025

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.

Neuropathic pain involves complex cortical mechanisms, yet the role of the medial secondary visual cortex (V2M) remains poorly understood. We hypothesized that glutamatergic neurons in V2M (V2M) contribute to pain modulation and explored their functional involvement in both normal and neuropathic pain states. Here, we found that V2M could be activated by peripheral stimulation under normal conditions.

View Article and Find Full Text PDF

It is widely accepted that biological motion (BM) perception involves the posterior superior temporal sulcus (pSTS). Yet, how individual neurons and neural circuits in pSTS encode BM remains unclear. Here we combined electrophysiological recordings with neural network modeling to elucidate BM computations in two subregions of pSTS.

View Article and Find Full Text PDF

Orderly specification and precise laminar deployment of mouse cortical projection neuron types through intermediate progenitors.

Dev Cell

March 2025

Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. Electronic address:

The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis (dNG) or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model, whereby successive generations of PNs sequentially migrate first to deep and then progressively to more superficial layers. However, its biological significance remains unclear, and the role of iNG in this process is unknown.

View Article and Find Full Text PDF

Behavior varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical origins of this individuality. Here, we demonstrate a neural correlate of odor preference behavior in the olfactory sensory periphery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!