Human inborn errors of immunity (IEI) represent a diverse group of genetic disorders affecting the innate and/or adaptive immune system. Some IEI entities comprise defects in DNA repair factors, resulting in (severe) combined immunodeficiencies, bone marrow failure, predisposition to malignancies, and potentially resulting in radiosensitivity (RS). While other IEI subcategories such as common variable immunodeficiency (CVID) and immune dysregulation disorders also associate with lymphoproliferative and malignant complications, the occurrence of RS phenotypes in the broader IEI population is not well characterized. Nonetheless, identifying RS in IEI patients through functional testing is crucial to reconsider radiation-related therapeutic protocols and to improve overall patient management. This study aimed to investigate chromosomal RS in a diverse cohort of 107 IEI patients using the G0 cytokinesis-block micronucleus (MN) assay. Our findings indicate significant variability in RS across specific genetic and phenotypical subgroups. Severe RS was detected in all ataxia-telangiectasia (AT) patients, a FANCI deficient and ERCC6L2 deficient patient, but not in any other IEI patient included in this cohort. Age emerged as an influencing factor for both spontaneous and radiation-induced MN yields, while the manifestation of additional clinical features, including infection susceptibility, immune dysregulation, or malignancies did not associate with increased MN levels. Our extensive analysis of RS in the IEI population underscores the clinical importance of RS assessment in AT patients and supports RS testing in all IEI patients suspected of having a DNA repair disorder associated with RS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825639PMC
http://dx.doi.org/10.1007/s10875-025-01858-2DOI Listing

Publication Analysis

Top Keywords

dna repair
12
iei patients
12
iei
9
inborn errors
8
errors immunity
8
immune dysregulation
8
iei population
8
patients
5
investigating chromosomal
4
chromosomal radiosensitivity
4

Similar Publications

Objective: The study investigated effects of peony callus extracts (PCE) on the protective efficacy against Ultraviolet B (UVB)-induced photoageing, using in vitro and in vivo studies. The research focused on PCE's ability to protect against inflammatory factors, DNA damage and accumulation of senescent cells, along with the evaluation of the extract's potential anti-photoageing benefits to skin.

Methods: Human keratinocyte cell line (HaCaT cells), mast cells and fibroblasts were used to evaluate the role of PCE in anti-photoageing.

View Article and Find Full Text PDF

Loss of N-6 adenine-specific DNA methyltransferase 1 leads to meiotic prophase abnormalities and male sub-fertility in mice.

Biol Reprod

March 2025

The Institute of Cardiovascular Sciences, School of Basic Medical Sciences; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Mammalian sexual reproduction critically relies on the generation of haploid gametes following a specialized cell division process known as meiosis. Here, we demonstrate that N-6 Adenine-Specific DNA methyltransferase 1 (N6AMT1) plays a crucial role in the progression of meiosis during spermatogenesis, as follows. N6AMT1 was expressed in germ cells throughout the entire process of spermatogenesis, with a peak in mRNA levels in spermatocytes at the prophase I stage of meiosis.

View Article and Find Full Text PDF

Interplay of replication timing, DNA repair, and translesion synthesis in UV mutagenesis in yeast.

Nucleus

December 2025

School of Molecular Biosciences, Biotechnology Life Sciences, Washington State University, Pullman, WA, USA.

Replication timing during S-phase impacts mutation rates in yeast and human cancers; however, the exact mechanism involved remains unclear. Here, we analyze the impact of replication timing on UV mutagenesis in . Our analysis indicates that UV mutations are enriched in early-replicating regions of the genome in wild-type cells, but in cells deficient in global genomic-nucleotide excision repair (GG-NER), mutations are enriched in late-replicating regions.

View Article and Find Full Text PDF

: Ultraviolet B (UV-B) is a significant risk factor for skin damage, as it induces cyclobutane pyrimidine dimers (CPD), which suppress DNA replication and transcription. Photolyase (PHR) is a blue light-dependent enzyme that repairs DNA damage caused by UV irradiation. While it is absent in human, it plays a crucial role in repairing CPD in other organisms.

View Article and Find Full Text PDF

A Truncated Mutation of TP53 Promotes Chemoresistance in Tongue Squamous Cell Carcinoma.

Int J Mol Sci

March 2025

MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.

Tongue squamous cell carcinoma (TSCC), a subtype of head and neck squamous cell carcinoma, is characterized by frequent chemoresistance. Genetic mutations commonly observed in TSCC play a critical role in malignant progression; thus, elucidating their functional significance is essential for developing effective treatment strategies. To more accurately investigate the relationship between mutations and chemoresistance, we established low-passage TSCC cells, CTSC-1, obtained from a chemoresistant patient, and CTSC-2, from a treatment-naïve patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!