The iso- to anisohydric continuum describes how plant regulate water potential and has been used to classify species hydraulic strategies. The slow to fast continuum is a whole-plant strategy for resource acquisition and utilization. The relationship between hydraulic and whole-plant economic strategy could provide a comprehensive method for assessing plants performance. We quantified the degree of isohydricity of 20 woody species in a warm temperate forest. We also measured other functional traits associated with hydraulic and economic strategies (leaf gas exchange, pressure-volume traits, predawn and midday water potential, native and maximum stem hydraulic conductivity, Huber value, and wood density), then explored the underlying trade-offs. Pearson correlations and PCA were performed to assess relationships between isohydricity and other functional traits. We found a coordinated series of iso- anisohydric and slow-fast spectra, where species percentage loss of hydraulic conductivity (PLC) and wood density (WD) were the two most powerful proxies. Along the coordinated continuum, the anisohydric species had higher leaf gas exchange, PLC, and water potential at the turgor loss point, and lower WD than the isohydrics. We found that isohydric species have high drought tolerance, giving them a greater chance of survival than the anisohydric species as drought events are anticipated to be more frequent and severe under global climate change. Identification of associated spectra among plant ecological strategies may increase understanding of how woody plants in temperate forests will respond to climate changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.13772 | DOI Listing |
Langmuir
March 2025
Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
Aryl diazonium electrografting is a versatile methodology for the functionalization of electrode surfaces, yet its usage has been hampered by both the short lifespan of aryl diazonium cations in aqueous solution and the harsh conditions required to generate them . This can make accessing complicated aryl diazonium cations and derivatized surfaces thereof difficult. The usage of triazabutadienes has the potential to address many of these issues as triazabutadienes are stable enough to endure multiple-step chemical syntheses and can persist for several hours in aqueous solution, yet upon UV exposure rapidly release aryl diazonium cations under mild conditions (i.
View Article and Find Full Text PDFLangmuir
March 2025
Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.
Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.
View Article and Find Full Text PDFJ Appl Oral Sci
March 2025
Universidade Federal do Piauí, Programa de Pós-Graduação em Odontologia (PPGO), Teresina, Piauí, Brasil.
Background: This article is derived from Irisvaldo Lima Guedes's Master's dissertation and is available at the address: https://sigaa.ufpi.br/sigaa/public/programa/noticias_desc.
View Article and Find Full Text PDFPLoS One
March 2025
Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America.
The hawksbill turtle, Eretmochelys imbricata, has been at risk of extinction for more than 40 years and remains critically endangered. While nesting beach protection is important for hatchling production, identifying inter-nesting, migratory, and foraging habitats is crucial for mitigating threats to population recovery. We report the use of satellite telemetry to monitor movements of 15 hawksbill turtles in the Western Caribbean.
View Article and Find Full Text PDFLangmuir
March 2025
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
The hydration force is indispensable for understanding short-range interfacial forces in aqueous systems. Perturbation of the hydration structure by ions generates an ion-specific hydration force. Surface-force measurements on calcite surfaces have suggested that Na decreases the repulsive hydration force by directly adsorbing the surface and disrupting the hydration layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!