Background: Although cell therapy has emerged as a promising approach to promote neovascularization, its effects are mostly limited to capillaries. To generate larger or stable vessels, layering of mural cells such as smooth muscle cells (SMCs) or pericytes is required. Recently, direct reprogramming approaches have been developed for generating SMCs. However, such reprogrammed SMCs lack genuine features of contractile SMCs, a native SMC phenotype; thus, their therapeutic and vessel-forming potential in vivo was not explored. Therefore, we aimed to directly reprogram human dermal fibroblasts toward contractile SMCs (rSMCs) and investigated their role for generating vascular mural cells in vivo and their therapeutic effects on ischemic disease.

Methods: We applied myocardin and all- retinoic acid with specific culture conditions to directly reprogram human dermal fibroblasts into rSMCs. We characterized their phenotype as contractile SMCs through quantitative reverse-transcriptase polymerase chain reaction, flow cytometry, and immunostaining. We then explored their contractility using a vasoconstrictor, carbachol, and through transmission electron microscope and bulk RNA sequencing. Next, we evaluated whether transplantation of rSMCs improves blood flow and induces vessel formation as mural cells in a mouse model of hind-limb ischemia with laser Doppler perfusion imaging and histological analysis. We also determined their paracrine effects.

Results: Our novel culture conditions using myocardin and all- retinoic acid efficiently reprogrammed human dermal fibroblasts into SMCs. These rSMCs displayed characteristics of contractile SMCs at the mRNA, protein, and cellular levels. Transplantation of rSMCs into ischemic mouse hind limbs enhanced blood flow recovery and vascular repair and improved limb salvage. Histological examination showed that vascular density was increased and the engrafted rSMCs were incorporated into the vascular wall as pericytes and vascular SMCs, thereby contributing to formation of stabler and larger microvessels. Quantitative reverse-transcriptase polymerase chain reaction analysis revealed that these transplanted rSMCs exerted pleiotropic effects, including angiogenic, arteriogenic, vessel-stabilizing, and tissue regenerative effects, on ischemic limbs.

Conclusions: A combination of myocardin and all- retinoic acid in defined culture conditions efficiently reprogrammed human fibroblasts into contractile and functional SMCs. The rSMCs were shown to be effective for vascular repair and contributed to neovascularization through mural cells and various paracrine effects. These human rSMCs could represent a novel source for cell-based therapy and research.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.124.070217DOI Listing

Publication Analysis

Top Keywords

mural cells
20
contractile smcs
16
human dermal
12
dermal fibroblasts
12
smcs rsmcs
12
myocardin all-
12
all- retinoic
12
retinoic acid
12
culture conditions
12
smcs
10

Similar Publications

Background: Cyclophosphamide (CTX) often induces oocyte and granulosa cell injury, leading to fertility loss in young female cancer survivors. Deciphering the mechanisms underlying follicular cell injury could offer novel insights into fertility preservation. Granulosa cells represent the most abundant cell type within the follicles and can be generally categorized as cumulus granulosa cells (CGCs) and mural granulosa cells (MGCs).

View Article and Find Full Text PDF

Study Question: Does FSH induce free radical generation with substantial oxidative damage in human cumulus granulosa cells (cGCs) and mural granulosa cells (mGCs)?

Summary Answer: FSH of both physiological and supraphysiological concentrations induced free radical generation on subcellular levels, most notably in the mitochondria, while the elevated free radical load caused neglectable oxidative damage in both cGCs and mGCs.

What Is Known Already: FSH is fundamental for regulation of granulosa cell (GC) function and oocyte maturation, during which a physiological level of reactive oxygen species (ROS) is essential, while excessive amounts lead to oxidative damage. Potential adverse effects of high FSH doses on GCs may be mediated by ROS.

View Article and Find Full Text PDF

Background: More than half of patients with ischemic stroke experience futile reperfusion, increasing the risk of death and disabilities despite a successful recanalization. The reason behind this is debated, and we aim to investigate cerebrovascular changes toward a broader understanding of these conditions. We hypothesize that ischemic stroke reperfusion modifies the expression profile in the microvasculature in a spatial manner toward peri-infarct brain edema and circulatory failure.

View Article and Find Full Text PDF

Introduction: Ganglioglioma of the ovary is a rare neuroectodermal-type tumor, morphologically like its counterparts in the central nervous system, and only two cases have been reported before.

Case Report: The patient, a 30-year-old woman with no prior medical history of brain tumors or neurological disorders, was found to have a cystic mass in the left ovary, accompanied by two mural nodules. Histologically, the mural nodule in the teratoma exhibited a combination of neoplastic ganglion and glial cells.

View Article and Find Full Text PDF

Hypoxemia impairs cardiopulmonary function. We investigated pulmonary artery remodeling in mice exposed to chronic hypoxia for up to five weeks and quantified associated changes in cardiac and lung function, without or with subsequent normoxic recovery in the absence or presence of exercise or pharmacological intervention. Hypoxia-induced stiffening of the proximal pulmonary artery stemmed primarily from remodeling of the adventitial collagen, which resulted in part from altered inter-cellular signaling associated with phenotypic changes in the mural smooth muscle cells and macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!