Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Acute rejection is a significant risk factor for developing chronic lung allograft dysfunction. Current monitoring tools, transbronchial biopsies and HLA antibody determination, have limitations in detecting acute rejection. This study aims to explore the potential utility of donor-derived cell-free DNA (ddcfDNA) as a non-invasive biomarker for detecting acute rejection in lung transplant recipients (LTR).
Methods: We developed a molecular method based on digital droplet PCR to determine the total amount and the proportion of ddcfDNA. Using blood samples collected sequentially post-transplant from a cohort of 81 LTR, we compared median levels of %ddcfDNA in patients with acute cellular rejection (ACR), antibody-mediated rejection (AMR), infection, or decline in pulmonary function (FEV).
Results: Median %ddcfDNA levels were significantly higher in groups with ACR (1.92% [0.70%, 2.30%], p=0.0006), AMR (1.27% [0.34%, 2.29%], p=0.0009), isolated lymphocytic bronchiolitis (0.54% [0.23%, 2.18%], p=0.03), and infection or prolonged ventilation over 30 days (0.50% [0.22%, 2.35%], p=0.005) versus stable allograft function group (0.26% [0.09%, 0.60%]). %ddcfDNA levels were also elevated in patients with FEV1 loss compared to those with stable or improving FEV1 after 12 months (1.98% . 1.36%, p=0.04). An optimal cut-off of 0.73% for %ddcfDNA was calculated to detect ACR and AMR with 80% specificity and 68% sensitivity.
Discussion: %ddcfDNA is a promising biomarker for identifying allograft injury due to acute rejection in LTR and could be a valuable tool for monitoring allograft health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814210 | PMC |
http://dx.doi.org/10.3389/fimmu.2025.1531774 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!