Multiple-omics analysis reveals a dedifferentiation-immune loop in intrahepatic cholangiocarcinoma.

Mol Ther

Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310003, Zhejiang Province, People's Republic of China. Electronic address:

Published: February 2025

Intrahepatic cholangiocarcinoma (ICC) is known for its diverse cell types and resistance to standard treatments, highlighting the importance of understanding its tumor microenvironment (TME) for improved prognostic accuracy and therapeutic innovation. Our study used a multi-omics approach to analyze the ICC TME in both human and mouse samples, linking survival outcomes to the complex cellular interactions within the TME. We discovered a dedifferentiation phenomenon in ICC cells driven by the Yes-associated protein (YAP) pathway, influenced by tumor-associated macrophages (TAMs). Conversely, ICC cells promoted an immunosuppressive environment in TAMs. Targeting TAMs in a transgenic mouse model disrupted this loop, enhancing T cell responses and suggesting a novel immunotherapy avenue for ICC. Our findings reveal a reciprocal dedifferentiation-immunosuppression loop between ICC cells and TAMs, advocating TAM targeting as a promising therapy and highlighting the potential of macrophage modulation in ICC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2025.02.019DOI Listing

Publication Analysis

Top Keywords

icc cells
12
intrahepatic cholangiocarcinoma
8
icc
7
multiple-omics analysis
4
analysis reveals
4
reveals dedifferentiation-immune
4
dedifferentiation-immune loop
4
loop intrahepatic
4
cholangiocarcinoma intrahepatic
4
cholangiocarcinoma icc
4

Similar Publications

Background: Immunohistochemistry (IHC) is a widely used method for localizing and semi-quantifying proteins in tissue samples. Traditional IHC analysis often relies on manually counting 200 cells within a designated area, a time-intensive and subjective process that can compromise reproducibility and accuracy. Advances in digital scanning and bioimage analysis tools, such as the open-source software QuPath, enable semi-automated cell counting, reducing subjectivity and increasing efficiency.

View Article and Find Full Text PDF

Robust generation of photoreceptor-dominant retinal organoids from porcine induced pluripotent stem cells.

Stem Cell Reports

February 2025

McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:

Outer retinal degenerative diseases (RDDs) and injuries leading to photoreceptor (PR) loss are prevailing causes of blindness worldwide. While significant progress has been made in the manufacture of human pluripotent stem cell (hPSC)-derived PRs, robust production of pluripotent stem cell (PSC)-PRs from swine, a popular preclinical large animal model, would provide an avenue to collect conspecific functional and safety data to complement human xenograft studies. Toward this goal, we describe the highly efficient generation of PR-dominant porcine induced PSC (piPSC)-derived retinal organoids (ROs) using modifications of our established hPSC-RO differentiation protocol.

View Article and Find Full Text PDF

Purpose: The junctional epithelium (JE) covers the cervical areas of developing or existing teeth. It can re-establish itself even after being removed during periodontal therapies, followed by wound healing. However, the mechanisms that can maintain this universally conserved structure are still unclear.

View Article and Find Full Text PDF

Introduction: Functional dyspepsia (FD) is a prevalent functional gastrointestinal disorder associated with oxidative stress (OS) and dysbiosis. Chaihushugan powder (CHSGP) demonstrates efficacy in treating FD; however, the underlying therapeutic mechanism is not yet elucidated. This study aims to investigate the effects of CHSGP on OS and gut microbiota (GM) in FD rats, with a particular emphasis on the role of GM as a potential target for the antioxidant properties of CHSGP.

View Article and Find Full Text PDF

Rhythmic bioelectrical activity known as slow waves is in part responsible for coordinating the contractions in the stomach, which play a crucial role in maintaining healthy digestion. Slow waves are generated by specialized pacemaker cells named interstitial cells of Cajal (ICC) distributed within smooth muscle cells of the stomach wall. In this study, tissue samples were collected from four regions (cardia, fundus, corpus, and antrum) of the stomach of a transgenic mouse that expressed green fluorescent protein in the ICC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!