Ocean Bottom Node (OBN) is a seismic data acquisition technique, comprising a hydrophone and a three-component geophone. In practice, the vertical component is susceptible to high-amplitude, low-velocity, and low-frequency shear wave noise, which negatively impacts the subsequent processing of dual-sensor data. The most commonly used method is adaptive matching subtraction, which estimates shear wave noise in the vertical component by solving an optimization problem. Neural networks, as robust nonlinear fitting tools, offer superior performance in resolving nonlinear mapping relationship and exhibit computational efficiency. In this paper, we introduce a self-supervised shear wave suppression approach for 3D OBN seismic data, using a neural network in place of the traditional adaptive matching subtraction operator. This method adopts the horizontal components as the input to the neural network, and measures the output and the noisy vertical component to establish a loss function for the network training. The network output is the predicted shear wave noise. To better balance signal leakage and noise suppression, the method incorporates a local normalized cross-correlation regularization term in the loss function. As a self-supervised method, it does not need clean data to serve as labels, thereby negating the tedious work of obtaining clean field data. Extensive experiments on both synthetic and field data demonstrate the effectiveness of the proposed method on shear wave noise suppression for 3D OBN seismic data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820631PMC
http://dx.doi.org/10.3390/s25030682DOI Listing

Publication Analysis

Top Keywords

shear wave
24
seismic data
16
wave noise
16
obn seismic
12
vertical component
12
ocean bottom
8
bottom node
8
data
8
adaptive matching
8
matching subtraction
8

Similar Publications

Benthic biological processes influence seabed heterogeneity and contribute to variability in geoacoustic properties. To investigate these relationships, measurements were conducted to quantify spatial variability in the upper few decimeters of sediment near the water-seabed interface within a fine-grained sediment deposit on the New England continental shelf. At each measurement location, an acoustic multicorer was deployed to sample the seabed.

View Article and Find Full Text PDF

Bioconsolidation strategies for carbonate lithologies: Effectiveness and mechanisms in calcarenite, travertine, and marble.

Sci Total Environ

March 2025

Department of Biology and Biotechnologies, 00185, Sapienza University of Rome, Rome, Italy; CNIS - Interdepartmental research center on nanotechnologies applied to engineering of Sapienza, Sapienza University of Rome, Rome, Italy. Electronic address:

Toxic substances are often employed in conventional stone preservation techniques, whereas biorestoration offers material compatibility along with significant benefits for cultural heritage preservation, environmental safety, and sustainability. However, the application of this innovative technique to natural rocks is not fully understood. In this study, we evaluated the efficiency of a carbonatogenic bacterial strain (Lysinbacillus fusiformis 3.

View Article and Find Full Text PDF

Stress and stiffness as predictors of shear wave velocity in peripheral nerve.

PLoS One

March 2025

Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America.

Shear wave elastography (SWE) is a promising non-invasive indicator for diagnosing peripheral neuropathy. Emerging validation studies using ultrasound-based measures of shear wave velocity (SWV) in other biological tissues, such as muscle, demonstrate there is a concern of whether SWE is an accurate measure of tensile stress or stiffness. Distinguishing between these two parameters and their relationship with SWV is crucial if SWE is to be used as a biomarker for peripheral neuropathies, where changes in mechanical properties are known to occur.

View Article and Find Full Text PDF

Unidirectional and backscattering-free propagation of sound waves is of fundamental interest in physics and highly sought-after in engineering. Current strategies utilize topologically protected chiral edge modes in bandgaps, or complex mechanisms involving active constituents or nonlinearity. Here we propose passive, linear, one-way edge states based on spin-momentum locking of Rayleigh waves in two-dimensional media in the limit of vanishing bulk to shear modulus ratio, which provides perfect unidirectional and backscattering-free edge propagation that is immune to any edge roughness and has no limitation on its frequency (instead of residing in gaps between bulk bands).

View Article and Find Full Text PDF

Enhancement of Impact Resistance and Shock Wave Protection in Strain Rate-Reinforced Leather Composite.

Macromol Rapid Commun

March 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, 230027, China.

This work develops the Leather/SSG composite with a laminated structure that consists of flexible leather and rate-dependent shear stiffening gel (SSG), which exhibits superior impact resistance and shock wave protection performance. The SSG is tightly bound to the leather fiber network through hydrogen bonding interactions between the interfaces. Owing to the phase change energy absorption effect of SSG and the synergizing impact force dispersion along the disordered fibers, the Leather/SSG can effectively alleviate the impact force (52%) and shows high energy absorption (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!