Inasmuch as misonidazole is a drug used in clinical trials for sensitizing radioresistant hypoxic cells in solid tumors, it seemed of interest to study its effects in human tumor cells maintained in tridimensional organotypic cultures. This type of culture involves: spatial organisation of the cells with fairly undisturbed differentiation patterns, minimal traumatizing culture conditions, and offers the possibility to follow post-treatment growth patterns over several months without disturbing the cultures. Misonidazole exhibited a radiosensitizing effect on irradiated nodules derived from a lung adenocarcinoma, and on cells of this tumor growing in monolayers. However, after a 4 hour contact with misonidazole at concentrations corresponding to the range of those found in the serum of treated patients, a significant stimulation of nodule growth was repeatedly observed, together with a strong increase in the frequency of sister chromatid exchanges. Similarly, after treatment of the same tumor cells in confluent monolayers, their colony forming ability was increased. These observations may account for some of the non- convincing therapeutic results obtained in clinical trials.
Download full-text PDF |
Source |
---|
J Am Chem Soc
January 2025
Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.
-cycloalkenes are abundant in bioactive natural products and have been used as powerful tools in chemical biology and drug discovery. However, strategies for the modular synthesis of -cycloalkenes, especially planar-chiral medium-sized ones, with high efficiency and selectivity, still remain elusive. Herein, we report a Pd-catalyzed asymmetric [7 + 2] cyclization strategy to address this challenge.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.
View Article and Find Full Text PDFSci Immunol
January 2025
Koch Institute at MIT, Cambridge, MA 02139, USA.
Immune responses against cancer are dominated by T cell exhaustion and dysfunction. Recent advances have underscored the critical role of early priming interactions in establishing T cell fates. In this review, we explore the importance of dendritic cell (DC) signals in specifying CD8 T cell fates in cancer, drawing on insights from acute and chronic viral infection models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!