This study examines the adsorption and desorption behaviors of phosphorus (P), arsenic (As), fluoride (F), and chromium (Cr) in aqueous solutions on green materials such as cork bark (CB) and pine bark (PB). These materials are characterized by active functional groups and net negative charges on their surfaces and porous structures. The evaluation considers variations in contaminant concentrations (0.01-10 mM) and pH (3.5-12). Cork bark exhibited higher adsorption capacity for As and F, while PB was more effective for P and Cr. Adsorption isotherms followed the Freundlich and Langmuir models, indicating surface heterogeneity and multilayer adsorption for most potentially toxic elements (PTEs). Desorption tests demonstrated low rates, with CB retaining up to 99% of F and 85% of As, and PB achieving up to 86% retention for Cr and 70% for P. The influence of pH was minimal for As, P, and F, but acidic conditions significantly enhanced Cr adsorption, showing similar behavior for both biopowders. These findings suggest that CB and PB biopowders are promising, environmentally friendly biosorbents for the removal of PTEs from aqueous solutions. Their effectiveness varies depending on the specific contaminant. This study highlights the potential of these natural materials for sustainable applications in water treatment and soil remediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819779 | PMC |
http://dx.doi.org/10.3390/ma18030625 | DOI Listing |
Langmuir
March 2025
Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
Aryl diazonium electrografting is a versatile methodology for the functionalization of electrode surfaces, yet its usage has been hampered by both the short lifespan of aryl diazonium cations in aqueous solution and the harsh conditions required to generate them . This can make accessing complicated aryl diazonium cations and derivatized surfaces thereof difficult. The usage of triazabutadienes has the potential to address many of these issues as triazabutadienes are stable enough to endure multiple-step chemical syntheses and can persist for several hours in aqueous solution, yet upon UV exposure rapidly release aryl diazonium cations under mild conditions (i.
View Article and Find Full Text PDFLangmuir
March 2025
Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.
Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.
View Article and Find Full Text PDFSci Adv
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China.
Directed evolution, enzyme design, and effective immobilization have been used to improve the catalytic activity. Dynamic polymers offer a promising platform to improve enzyme activity in aqueous solutions. Here, amphiphilic dynamers and lipase self-assemble into nanoparticles of 150- to 600-nanometer diameter, showing remarkable threefold enhancement in catalytic activity.
View Article and Find Full Text PDFAcc Chem Res
March 2025
Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
ConspectusProteins and peptides occur ubiquitously in organisms and play key functional roles, as structural elements and catalysts. Their major natural source is ribosomal synthesis, which produces polypeptides from 20 amino acid building blocks. Peptides containing noncanonical amino acids have long been prepared by chemical synthesis, which has provided a wealth of physiologically active compounds.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy.
The growing amount of carbon dioxide (CO) in the atmosphere significantly contributes to global warming and climate change. This study focuses on the use of aqueous potassium carbonate (KCO) solutions as a solvent for CO absorption, emphasizing the role of titanium dioxide (TiO) nanoparticles in enhancing performance. A detailed understanding of reaction kinetics and the dynamic behavior of the absorber is crucial for optimizing the process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!