Efficient Recycling Processes for Lithium-Ion Batteries.

Materials (Basel)

Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.

Published: January 2025

Lithium-ion batteries (LIBs) are an indispensable power source for electric vehicles, portable electronics, and renewable energy storage systems due to their high energy density and long cycle life. However, the exponential growth in production and usage has necessitated highly effective recycling of end-of-life LIBs to recover valuable resources and minimize the environmental impact. Pyrometallurgical and hydrometallurgical processes are the most common recycling methods but pose considerable difficulties. The energy-intensive pyrometallurgical recycling process results in the loss of critical materials such as lithium and suffers from substantial emissions and high costs. Solvent extraction, a hydrometallurgical method, offers energy-efficient recovery for lithium, cobalt, and nickel but requires hazardous chemicals and careful waste management. Direct recycling is an alternative to traditional methods as it preserves the cathode active material (CAM) structure for quicker and cheaper regeneration. It also offers environmental advantages of lower energy intensity and chemical use. Hybrid pathways, combining hydrometallurgical and direct recycling methods, provide a cost-effective, scalable solution for LIB recycling, maximizing material recovery with minimal waste and environmental risk. The success of recycling methods depends on factors such as battery chemistry, the scalability of recovery processes, and the cost-effectiveness of waste material recovery. Though pyrometallurgical and hydrometallurgical processes have secured their position in LIB recycling, research is proceeding toward newer approaches, such as direct and hybrid methods. These alternatives are more efficient both environmentally and in terms of cost with a broader perspective into the future. In this review, we describe the current state of direct recycling as an alternative to traditional pyrometallurgical and hydrometallurgical methods for recuperating these critical materials, particularly lithium. We also highlight some significant advancements that make these objectives possible. As research progresses, direct recycling and its variations hold great potential to reshape the way LIBs are recycled, providing a sustainable pathway for battery material recovery and reuse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11818314PMC
http://dx.doi.org/10.3390/ma18030613DOI Listing

Publication Analysis

Top Keywords

direct recycling
16
pyrometallurgical hydrometallurgical
12
recycling methods
12
material recovery
12
recycling
10
lithium-ion batteries
8
hydrometallurgical processes
8
critical materials
8
materials lithium
8
recycling alternative
8

Similar Publications

Enhanced activity and self-regeneration in dynameric cross-linked enzyme nanoaggregates.

Sci Adv

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China.

Directed evolution, enzyme design, and effective immobilization have been used to improve the catalytic activity. Dynamic polymers offer a promising platform to improve enzyme activity in aqueous solutions. Here, amphiphilic dynamers and lipase self-assemble into nanoparticles of 150- to 600-nanometer diameter, showing remarkable threefold enhancement in catalytic activity.

View Article and Find Full Text PDF

Direct Integration of Spent LiMnO with High Voltage Aqueous Zinc-Manganese Redox Flow Batteries as a Practical Upcycling Process.

Small

March 2025

Department of Nanoenergy Engineering, Pusan National University, 50, Busan daehak-ro 63 beon-gil 2, Busan, Geumjeong-gu, 46241, Republic of Korea.

With the explosive growth of lithium-ion batteries (LIBs), research on the recycling of spent batteries is widely conducted. However, conventional processes involve complex procedures, high costs, and environmental issues. This study introduces the electrochemical upcycling of spent LiMnO (LMO) cathode material, incorporating pre-filtration (PF) and pre-reduction (PR) processes to enable its direct application in redox flow batteries (RFBs).

View Article and Find Full Text PDF

Nitrogen-rich metal organic frameworks (MOFs) structures have a great potential for the chemical fixation of CO. In this direction, we have utilized the highly efficient nitrogen-rich dual linker MOF of nickel(ii) as a heterogeneous catalyst in solvent-free chemical fixation of CO into cyclic carbonates at ambient pressure. In this present work, nitrogen-rich nickel-MOF, Ni-ImzAdn, was synthesized from imidazole and adenine as efficient nitrogen-rich linkers under hydrothermal conditions (Imz = Imidazole and Adn = Adenine).

View Article and Find Full Text PDF

An innovative high-rate biofilm-based process: Biopolymer production and recovery from wastewater organic pollutants.

J Environ Manage

March 2025

National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China. Electronic address:

In this study, a novel high-rate moving bed biofilm reactor (MBBR) was constructed to enhance wastewater COD bio-conversion and biopolymer recovery with a hydraulic retention time (HRT) of 1.0 h and an organic loading rate (OLR) of 4.8 kg COD·m·d.

View Article and Find Full Text PDF

Micro-magnetite has been widely applied to improve anaerobic digestion (AD) performance, while comprehensive investigation of microbial community succession, metabolic pathway and magnetite fate remains unclear. In the current study, the effects of micro-magnetite (FeO) on anaerobic co-digestion (AcD) of waste activated sludge and slaughterhouse waste were investigated. Experimental results indicated that the cumulative methane production was significantly increased from 484.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!