This study investigates the deformation behavior and interfacial phenomena occurring during the high-velocity impact of a copper particle into a copper substrate under various conditions using FEM. It also offers an enhanced physics-based model based on discrete dislocation dynamics simulations to depict newly observed features such as interfacial instabilities and shear localization leading to bonding and particle fragmentation. To investigate bonding mechanisms at the particle-substrate interface, additional simulations using a one-element-thickness model are conducted. These simulations focus on the deformation behavior at the interface, revealing wavy shape formation in the substrate due to disparities in strain-rate levels. Material instabilities, localized at the intersection of plane and release waves, progress hand-in-hand during the early stages of impact, suggesting shear behavior as a precursor to instabilities. The effect of shear viscosity on particle deformation and interfacial behavior is also examined, showing that increased viscosity leads to thermal material softening and enhanced deformation. Material jetting and interfacial instability are observed, particularly at higher viscosity thresholds. Additionally, the impact of drag coefficient variations on particle deformation is explored, indicating a critical role in interfacial stability and particle flattening. Finally, the occurrence of adiabatic shear instability and localization is investigated, revealing shear localization regions at the particle-substrate interface and within the particle itself responsible for particle fragmentation. To this aim, damage initiation and evolution laws are applied to identify regions of shear localization, crucial for particle-substrate bonding and mechanical interlocking. The impact velocity is shown to influence shear localization, with higher velocities resulting in increased deformation and larger localization regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11818893 | PMC |
http://dx.doi.org/10.3390/ma18030490 | DOI Listing |
Sci Adv
March 2025
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Bacterial populations experience chemical gradients in nature. However, most experimental systems either ignore gradients or fail to capture gradients in mechanically relevant contexts. Here, we use microfluidic experiments and biophysical simulations to explore how host-relevant shear flow affects antimicrobial gradients across communities of the highly resistant pathogen .
View Article and Find Full Text PDFSoft Matter
March 2025
Institute of Electronic Structure & Laser, FORTH, Heraklion, 70013, Greece.
The cage concept, a central microscopic mechanism for glassy dynamics, has been utilized in concentrated colloidal suspensions to describe a number of phenomena. Here, we probe the evolution of cage formation and shear elasticity with increasing volume fraction in hard sphere suspensions, with emphasis on the short-time dynamics. To this end, we utilize linear viscoelastic (LVE) measurements, by means of conventional rotational rheometers and a home-made HF piezo-rheometer, to probe the dynamic response over a broad range of volume fractions up to the very dense glassy regime in proximity to random close packing.
View Article and Find Full Text PDFOf the 1.5 million emergency room visits each year in the United States due to flexor tendon injuries in the hand, over 30-40% result in peritendinous adhesions which can limit range of motion (ROM) and severely impact an individual's quality of life. Adhesions are fibrous scar-like tissues which can form between adjacent tissues in the body in response to injury, inflammation, or during normal healing following surgery.
View Article and Find Full Text PDFMed Eng Phys
March 2025
Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments Micro-Tech (Nanjing) Co., Ltd., Nanjing, Jiangsu Province 210032, PR China.
Obstructive lung diseases, marked by airway stenosis, are chronic and pose significant mortality risks. This study aims to analyze airflow patterns in obstructed bronchi, comparing them to healthy airways during tidal breathing to improve our comprehension of disease effects on respiratory function. The current studies mostly overlook the specific morphology of the patient's upper airway or the elastic deformation of the airway soft tissues, which results in the existing results not being sufficient to effectively guide surgical treatment.
View Article and Find Full Text PDFObjective: Supplementing animal feed with Allium mongolicum Regel powder (AMRP) additives can promote muscle production and improve meat quality. Here, we explored the effects of dietary AMRP supplementation on the performance, meat quality, and muscle transcriptome profile of Angus calves.
Methods: Twelve healthy black Angus calves (female, average body weight = 280.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!