Green Recycled Aggregate in Concrete: Feasibility Study.

Materials (Basel)

Scientific Secretary, Building Research Institute, 00-611 Warsaw, Poland.

Published: January 2025

With increasing concrete production, CO emissions rise, and natural resources deplete, creating a need for new material solutions. This article analyzes the feasibility of using green materials, like recycled aggregate (RA) from construction and demolition waste (CDW) to be incorporated into concrete (RAC). The objective of this paper is to determine that the use of RA ensures receiving sustainable concrete in comparison with NA and LA. The sustainability assessment was conducted based on an analysis of the life cycle in terms of the environmental, economic, and public perception aspects. Additionally, the analysis was extended to include two newly introduced indicators: quality of aggregates and concrete performance. A proprietary scoring method based on ideal aggregate characteristics was used, which was enhanced by innovative multidimensional analysis, with credits assigned based on a literature review conducted using artificial intelligence (AI) statistical tools to partially assist in the selection of items. The results could even show that RA outperformed natural aggregates (NA) and artificial (light) aggregates (LA) in the environmental (over 80% of the results) results as well as the economic (over 65%) and public perception categories (over 80%). However, RA ranked second behind NA in terms of quality aggregates and concrete performance, with LA scoring lowest. The results highlight RAC as a satisfactory sustainable option compared with NAC, supporting the circular economy by reducing waste, emissions, and resource consumption. The best solution would be hybrid concrete containing a partial substitute for natural aggregates in the form of recycled aggregates, enabling the advantages of both types of aggregates to complement each other and offset their limitations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11818929PMC
http://dx.doi.org/10.3390/ma18030488DOI Listing

Publication Analysis

Top Keywords

recycled aggregate
8
public perception
8
quality aggregates
8
aggregates concrete
8
concrete performance
8
natural aggregates
8
concrete
7
aggregates
7
green recycled
4
aggregate concrete
4

Similar Publications

Recycled aggregate concrete (RAC), which is made by replacing all natural coarse and fine aggregates with recycled aggregate, plays a significant role in improving the recycling rate of construction materials, reducing carbon emissions from construction, and alleviating ecological degradation issues. However, due to its low strength and significant shrinkage and deformation problems, RAC has limited application. The effort of fiber type, fiber admixture, and fiber hybridization on autogenous shrinkage were studied to improve the structural safety of building materials and broaden the application of RAC.

View Article and Find Full Text PDF

Research on the Solidification Structure and Thermoplasticity of CJ5L Recycled Stainless Steel.

Materials (Basel)

March 2025

School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.

The objective of this study is to investigate the effect of the solidification microstructure of CJ5L Recycled Stainless Steel in the cast state on its thermoplasticity. Therefore, the residual ferrite, solidification structure, and high-temperature thermoplasticity in both Recycled and Non-Recycled steel ingots are examined. The principal experimental techniques employed include SEM, OM, EPMA, and EDS.

View Article and Find Full Text PDF

Influence of Aggregate Composition on the Properties of Recycled Concrete and Improving Performance Using Special Additives.

Materials (Basel)

February 2025

University of Pecs, Faculty of Engineering and Information Technology, Structural Diagnostics and Analyses Research Team, H-7624 Pécs, Hungary.

The principles of the circular economy and the effective utilization of construction and demolition waste are becoming increasingly important, as evidenced by a growing body of research in this field. However, studies focusing on the waterproofing properties and setting times of recycled concrete derived from various construction and demolition waste sources remain scarce. This research investigates the characteristics of recycled aggregates from different origins and explores how these characteristics influence the properties of concrete.

View Article and Find Full Text PDF

Pavement humidity warping is a critical factor limiting the application of PPRBAC on low-volume roads. A nonlinear wet-warping stress formula for PPRBAC slabs has been derived based on previous experimental results, and the finite element method was employed to develop a single-board model in order to verify the accuracy of the analytical solution. Subsequently, the finite difference method, in conjunction with the finite element method, was employed to investigate the calculation methodology for wet-warping stress in PPRBAC slabs during service.

View Article and Find Full Text PDF

This study investigates the mechanical properties and microstructure of basalt fiber (BF) and nanoalumina (NA)-modified ultra-high-performance concrete with recycled aggregates (UHPC-RA) under high-temperature conditions. The effects of different replacement rates of recycled aggregates (RAs), BF content, and NA content on the compressive strength, splitting tensile strength, and elastic modulus were evaluated at ambient temperatures and after exposure to 200 °C, 400 °C, 600 °C, and 800 °C. The results show that mechanical properties decrease with temperature rise, but specimens containing BF exhibited improved crack resistance and better high-temperature integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!